Lecture 3:

- Kernel Regression
- Curse of Dimensionality
Administrative

• **Assignment 1** will be out on Thursday
• It is due **March 4** (i.e. in two weeks).
• It includes
 − Pencil-and-paper derivations
 − Implementing kNN classifier
 − Implementing linear regression
 − numpy/Python code

• **Note:** Lecture slides are not enough, you should also read related book chapters!
Recall from last time... Nearest Neighbors

Example dataset: CIFAR-10
10 labels
50,000 training images
10,000 test images.

• Very simple method
• Retain all training data
 - It can be slow in testing
 - Finding NN in high dimensions is slow
• Metrics are very important
• Good baseline

For every test image (first column), examples of nearest neighbors in rows

the data

NN classifier

5-NN classifier
Classification

• Input: X
 - Real valued, vectors over real.
 - Discrete values (0,1,2,...)
 - Other structures (e.g., strings, graphs, etc.)

• Output: Y
 - Discrete (0,1,2,...)
Regression

• Input: X
 - Real valued, vectors over real.
 - Discrete values (0,1,2,...)
 - Other structures (e.g., strings, graphs, etc.)

• Output: Y
 - Real valued, vectors over real.

Stock Market Prediction

Y = ?
X = Feb01
What should I watch tonight?

The Martian (2015)
PG-13 | 144 min | Adventure, Comedy, Drama | 2 October 2015 (USA)

Your rating: ★★★★★★★★★★ -/10
Ratings: 8.1/10 from 271,829 users Metascore: 80/100
Reviews: 750 user | 499 critic | 46 from Metacritic.com

During a manned mission to Mars, Astronaut Mark Watney is presumed dead after a fierce storm and left behind by his crew. But Watney has survived and finds himself stranded and alone on the hostile planet. With only meager supplies, he must draw upon his ingenuity, wit and spirit to subsist and find a way to signal to Earth that he is alive.

Director: Ridley Scott
Writers: Drew Goddard (screenplay), Andy Weir (book)
Stars: Matt Damon, Jessica Chastain, Kristen Wiig
See full cast and crew »

See More on IMDb Pro »
What should I watch tonight?

Point Break (2015)

- **Rating:** 5.4/10 from 7,322 users
- **Metascore:** 34/100
- **Reviews:** 60 user, 84 critic, 19 from Metacritic.com

A young FBI agent infiltrates an extraordinary team of extreme sports athletes he suspects of masterminding a string of unprecedented, sophisticated corporate heists. "Point Break" is inspired by the classic 1991 hit.

Director: Ericson Core
Writers: Kurt Wimmer (screenplay), Rick King (story), 5 more credits »
Stars: Édgar Ramírez, Luke Bracey, Ray Winstone
| See full cast and crew »

Find Movies, TV shows, Celebrities and more...

Movies, TV & Showtimes
Celebs, Events & Photos
News & Community
Watchlist
What should I watch tonight?

Predict this automatically!
Today

• Kernel regression
 – nonparametric

• Distances

• Next: Linear regression
 – parametric
 – simple model
Simple 1-D Regression

- Circles are data points (i.e., training examples) that are given to us.
- The data points are uniform in x, but may be displaced in y.
 \[t(x) = f(x) + \varepsilon \]
 with ε some noise.
- In green is the “true” curve that we don’t know.

In green is the “true” curve that we don’t know.

Urtasun, Zemel, Fidler (UofT)
CSC 411: 02-Regression
Jan 13, 2016 5 / 22
Kernel Regression
1-NN for Regression

Here, this is the closest datapoint.

Figure Credit: Carlos Guestrin
1-NN for Regression

- Often bumpy (overfits)
9-NN for Regression

- Often bumpy (overfits)
Weighted K-NN for Regression

• Given: Training data \((x_1,y_1), \ldots, (x_n,y_n)\)
 – Attribute vectors: \(x_i \in X\)
 – Target attribute: \(y_i \in \mathcal{R}\)

• Parameter:
 – Similarity function: \(K: X \times X \rightarrow \mathcal{R}\)
 – Number of nearest neighbors to consider: \(k\)

• Prediction rule
 – New example \(x'\)
 – K-nearest neighbors: \(k\) train examples with largest \(K(x_i,x')\)

\[
h(x') = \frac{\sum_{i \in \text{knn}(x')} y_i K(x_i, x')} {\sum_{i \in \text{knn}(x')} K(x_i, x')}\]
Multivariate distance metrics

• Suppose the input vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$ are two dimensional:

 \[
 \mathbf{x}_1 = (x_{11}, x_{12}), \quad \mathbf{x}_2 = (x_{21}, x_{22}), \quad \ldots, \quad \mathbf{x}_N = (x_{N1}, x_{N2}).
 \]

• One can draw the nearest-neighbor regions in input space.

\[
\text{Dist}(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2
\]

\[
\text{Dist}(\mathbf{x}_i, \mathbf{x}_j) = (x_{i1} - x_{j1})^2 + (3x_{i2} - 3x_{j2})^2
\]

The relative scalings in the distance metric affect region shapes.
Example: Choosing a restaurant

• In everyday life we need to make decisions by taking into account lots of factors

• The question is what weight we put on each of these factors (how important are they with respect to the others).

<table>
<thead>
<tr>
<th>Reviews (out of 5 stars)</th>
<th>$</th>
<th>Distance</th>
<th>Cuisine (out of 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>30</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>53</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Euclidean distance metric

$$D(x, x') = \sqrt{\sum_i \sigma_i^2 (x_i - x_i')^2}$$

Or equivalently,

$$D(x, x') = \sqrt{(x_i - x_i')^T A (x_i - x_i')}$$

where

$$A = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_N^2
\end{bmatrix}$$
Notable distance metrics (and their level sets)

Scaled Euclidian (L_2)

Mahalanobis (non-diagonal A)
Minkowski distance

\[D = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p} \]

Image Credit: By Waldir (Based on File:MinkowskiCircles.svg) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
Notable distance metrics (and their level sets)

- Scaled Euclidian (L_2)
- L_1 norm (absolute)
- L_{∞} (max) norm

Slide Credit: Carlos Guestrin
Kernel Regression/Classification

Four things make a memory based learner:

• **A distance metric**
 - Euclidean (and others)

• **How many nearby neighbors to look at?**
 - All of them

• **A weighting function (optional)**
 - \(w_i = \exp(-d(x_i, \text{query})^2 / \sigma^2) \)
 - Nearby points to the query are weighted strongly, far points weakly. The \(\sigma \) parameter is the Kernel Width. Very important.

• **How to fit with the local points?**
 - Predict the weighted average of the outputs
 \[\text{predict} = \frac{\Sigma w_i y_i}{\Sigma w_i} \]
Weighting/Kernel functions

\[w_i = \exp\left(-d(x_i, \text{query})^2 / \sigma^2\right) \]

(Our examples use Gaussian)
Effect of Kernel Width

• What happens as $\sigma \to \infty$?

• What happens as $\sigma \to 0$?
Problems with Instance-Based Learning

• Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset – very slow!
 - Must use tricks like approximate nearest neighbour search

• Doesn’t work well when large number of irrelevant features
 - Distances overwhelmed by noisy features

• Curse of Dimensionality
 - Distances become meaningless in high dimensions
Curse of Dimensionality

- Consider applying a KNN classifier/regressor to data where the inputs are uniformly distributed in the D-dimensional unit cube.
- Suppose we estimate the density of class labels around a test point x by “growing” a hyper-cube around x until it contains a desired fraction f of the data points.
- The expected edge length of this cube will be $e_D(f) = f^{1/D}$.
- If $D = 10$, and we want to base our estimate on 10% of the data, we have $e_{10}(0.1) = 0.8$, so we need to extend the cube 80% along each dimension around x.
- Even if we only use 1% of the data, we find $e_{10}(0.01) = 0.63$. — no longer very local
Next Lecture:
Linear Regression