Lecture 9:

- Logistic Regression
- Discriminative vs. Generative Classification

Aykut Erdem
March 2016
Hacettepe University
Administrative

• **Assignment 2** is out!
 - It is due **March 18** (i.e. in 2 weeks)
 - You will implement
 • Naive Bayes Classifier for sentiment analysis on Twitter data

• **Project proposal** due March 10!
 - a half page description
 - problem to be investigated, why it is interesting, what data you will use, etc.
 - http://goo.gl/forms/S5sRXJhKUI
This week

• Logistic Regression

• Discriminative vs. Generative Classification

• Linear Discriminant Functions
 - Two Classes
 - Multiple Classes
 - Fisher’s Linear Discriminant

• Perceptron
Logistic Regression
Last time... Naïve Bayes

- NB Assumption: \(P(X_1...X_d|Y) = \prod_{i=1}^{d} P(X_i|Y) \)

- NB Classifier:
 \[
 f_{NB}(x) = \arg \max_y \prod_{i=1}^{d} P(x_i|y)P(y)
 \]

- Assume parametric form for \(P(X_i|Y) \) and \(P(Y) \)
 - Estimate parameters using MLE/MAP and plug in
Gaussian Naïve Bayes (GNB)

- There are several distributions that can lead to a linear boundary.
- As an example, consider Gaussian Naïve Bayes:

\[Y \sim \text{Bernoulli}(\pi) \]

\[P(X_i|Y = y) = \frac{1}{\sqrt{2\pi\sigma^2_{i,y}}} e^{-\frac{(X_i - \mu_{i,y})^2}{2\sigma^2_{i,y}}} \]

Gaussian class conditional densities

- What if we assume variance is independent of class, i.e. \(\sigma^2_{i,0} = \sigma^2_{i,1} \)
GNB with equal variance is a Linear Classifier!

Decision boundary:

\[\prod_{i=1}^{d} P(X_i|Y = 0) P(Y = 0) = \prod_{i=1}^{d} P(X_i|Y = 1) P(Y = 1) \]

\[
\log \frac{P(Y = 0) \prod_{i=1}^{d} P(X_i|Y = 0)}{P(Y = 1) \prod_{i=1}^{d} P(X_i|Y = 1)} = \log \frac{1 - \pi}{\pi} + \sum_{i=1}^{d} \log \frac{P(X_i|Y = 0)}{P(X_i|Y = 1)} \\
= \log \frac{1 - \pi}{\pi} + \sum_{i} \frac{\mu_{i,1}^2 - \mu_{i,0}^2}{2\sigma_i^2} + \sum_{i} \frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2} X_i =: w_0 + \sum_{i} w_i X_i
\]

 Constant term

 First-order term
Gaussian Naive Bayes (GNB)

\begin{align*}
X &= (x_1, x_2) \\
P_1 &= P(Y = 0) \\
P_2 &= P(Y = 1) \\
p_1(X) &= p(X|Y = 0) \sim \mathcal{N}(M_1, \Sigma_1) \\
p_2(X) &= p(X|Y = 1) \sim \mathcal{N}(M_2, \Sigma_2)
\end{align*}
Generative vs. Discriminative Classifiers

• Generative classifiers (e.g. Naïve Bayes)
 - Assume some functional form for $P(X,Y)$ (or $P(X|Y)$ and $P(Y)$)
 - Estimate parameters of $P(X|Y)$, $P(Y)$ directly from training data

• But $\arg\max_Y P(X|Y) P(Y) = \arg\max_Y P(Y|X)$

• Why not learn $P(Y|X)$ directly? Or better yet, why not learn the decision boundary directly?

• Discriminative classifiers (e.g. Logistic Regression)
 - Assume some functional form for $P(Y|X)$ or for the decision boundary
 - Estimate parameters of $P(Y|X)$ directly from training data
Logistic Regression

Assumes the following functional form for \(P(Y|X) \):

\[
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

Logistic function applied to linear function of the data

Logistic function (or Sigmoid):

\[
\frac{1}{1 + \exp(-z)}
\]

Features can be discrete or continuous!
Logistic Regression is a Linear Classifier!

Assumes the following functional form for \(P(Y|X) \):

\[
P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

Decision boundary:

\[
P(Y = 0|X) \geq P(Y = 1|X)
\]

\[
w_0 + \sum_i w_i X_i \geq 0
\]

(Linear Decision Boundary)
Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow P(Y = 0|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow \frac{P(Y = 0|X)}{P(Y = 1|X)} = \exp(w_0 + \sum_i w_i X_i) \begin{cases} 0 & \leq 1 \\ 1 & > 1 \end{cases}$$

$$\Rightarrow w_0 + \sum_i w_i X_i \begin{cases} 0 & \geq 0 \\ 1 & \geq 1 \end{cases}$$
Logistic Regression for more than 2 classes

- Logistic regression in more general case, where $Y \in \{y_1, ..., y_K\}$

\[
P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{d} w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}
\]

for $k < K$

\[
P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}
\]

for $k < K$ (normalization, so no weights for this class)
Training Logistic Regression

We’ll focus on binary classification:

\[
P(Y = 0 | X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
P(Y = 1 | X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

How to learn the parameters \(w_0, w_1, \ldots, w_d\)?

Training Data

\[\{(X^{(j)}, Y^{(j)})\}_{j=1}^n\]

\[X^{(j)} = (X_1^{(j)}, \ldots, X_d^{(j)})\]

Maximum Likelihood Estimates

\[\hat{w}_{MLE} = \arg \max_w \prod_{j=1}^n P(X^{(j)}, Y^{(j)} | w)\]
Training Logistic Regression

We’ll focus on binary classification:

\[
P(Y = 0 | X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

\[
P(Y = 1 | X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\]

How to learn the parameters \(w_0, w_1, \ldots, w_d \)?

Training Data

\[
\{(X^{(j)}, Y^{(j)})\}^n_{j=1}
\]

\[
X^{(j)} = (X_1^{(j)}, \ldots, X_d^{(j)})
\]

Maximum Likelihood Estimates

\[
\hat{w}_{MLE} = \arg \max_w \prod_{j=1}^n P(X^{(j)}, Y^{(j)} | w)
\]

But there is a problem…

Don’t have a model for \(P(X) \) or \(P(X|Y) \) — only for \(P(Y|X) \)
Training Logistic Regression

How to learn the parameters w_0, w_1, \ldots, w_d?

Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$

$x^{(j)} = (x_1^{(j)}, \ldots, x_d^{(j)})$

Maximum (Conditional) Likelihood Estimates

$$\hat{w}_{MCLL} = \arg \max_w \prod_{j=1}^n P(Y^{(j)} \mid x^{(j)}, w)$$

Discriminative philosophy — Don’t waste effort learning $P(X)$, focus on $P(Y \mid X)$ — that’s all that matters for classification!
Expressing Conditional log Likelihood

\[l(W) = \sum_{l} Y^l \ln P(Y^l = 1 | X^l, W) + (1 - Y^l) \ln P(Y^l = 0 | X^l, W) \]

\[P(Y = 0 | X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]

\[P(Y = 1 | X) = \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)} \]

\(Y \) can take only values 0 or 1, so only one of the two terms in the expression will be non-zero for any given \(Y^l \).
Expressing Conditional log Likelihood

\[l(W) = \sum_l Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W) \]

\[= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i^n w_i X_i^l)) \]
Maximizing Conditional log Likelihood

$$\max_w \ l(w) \equiv \ln \prod_j P(y^j | x^j, w)$$

$$= \sum_j y^j (w_0 + \sum_i w_i x_i^j) - \ln (1 + \exp(w_0 + \sum_i w_i x_i^j))$$

Bad news: no closed-form solution to maximize $l(w)$

Good news: $l(w)$ is concave function of w! concave functions easy to optimize (unique maximum)
Optimizing concave/convex functions

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

$$\nabla_w l(w) = [\frac{\partial l(w)}{\partial w_0}, \ldots, \frac{\partial l(w)}{\partial w_n}]'$$

Update rule:

$$\Delta w = \eta \nabla_w l(w)$$

$$w_i(t+1) \leftarrow w_i(t) + \eta \frac{\partial l(w)}{\partial w_i} \bigg|_t$$

Learning rate, $\eta > 0$
Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid x^j, w^{(t)})]$$

For $i=1, \ldots, d$,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid x^j, w^{(t)})]$$

repeat

- Gradient ascent is simplest of optimisation approaches
 - e.g. Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)
Effect of step-size η

Large $\eta \rightarrow$ Fast convergence but larger residual error
Also possible oscillations

Small $\eta \rightarrow$ Slow convergence but small residual error
Naïve Bayes vs. Logistic Regression

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what’s the difference???
Naïve Bayes vs. Logistic Regression

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what’s the difference???
- LR makes no assumption about $P(X|Y)$ in learning!!!
- Loss function!!!
 - Optimize different functions! Obtain different solutions
Naïve Bayes vs. Logistic Regression

Consider Y Boolean, Xᵢ continuous X=<X₁ … Xₖ>

Number of parameters:
- NB: 4d+1 \(\pi, (\mu_{1,y}, \mu_{2,y}, ..., \mu_{d,y}), (\sigma^2_{1,y}, \sigma^2_{2,y}, ..., \sigma^2_{d,y}) \) \(y=0,1 \)
- LR: d+1 \(w_0, w_1, ..., w_d \)

Estimation method:
- NB parameter estimates are uncoupled
- LR parameter estimates are coupled
Generative vs. Discriminative

[Ng & Jordan, NIPS 2001]

Given infinite data (asymptotically),

If conditional independence assumption holds, Discriminative and generative NB perform similar.

\[\epsilon_{\text{Dis}, \infty} \sim \epsilon_{\text{Gen}, \infty} \]

If conditional independence assumption does NOT holds, Discriminative outperforms generative NB.

\[\epsilon_{\text{Dis}, \infty} < \epsilon_{\text{Gen}, \infty} \]
Generative vs. Discriminative

[Ng & Jordan, NIPS 2001]

Given finite data (n data points, d features),

\[
\epsilon_{\text{Dis},n} \leq \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{d}{n}}\right)
\]

\[
\epsilon_{\text{Gen},n} \leq \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)
\]

Naïve Bayes (generative) requires \(n = O(\log d) \) to converge to its asymptotic error, whereas Logistic regression (discriminative) requires \(n = O(d) \).

Why? “Independent class conditional densities”
 - parameter estimates not coupled – each parameter is learnt independently, not jointly, from training data.
Naïve Bayes vs. Logistic Regression

Verdict

Both learn a linear decision boundary. Naïve Bayes makes more restrictive assumptions and has higher asymptotic error, but converges faster to its less accurate asymptotic error.
Experimental Comparison (Ng-Jordan’01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

- pima (continuous)
- adult (continuous)
- boston (predict if > median price, continuous)
- optdigits (0’s and 1’s, continuous)
- optdigits (2’s and 3’s, continuous)
- ionosphere (continuous)

More in the paper...
What you should know

- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by maximizing conditional likelihood
 - no closed-form solution
 - concave! global optimum with gradient ascent
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class! assumption on \(P(X|Y) \)
 - LR: Functional form of \(P(Y|X) \), no assumption on \(P(X|Y) \)
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit