Learning Deconvolution Network for Semantic Segmentation

Hyeonwoo Noh, Seunghoon Hong, Bohyung Han

Mehmet Günel
What is this paper about?

- A novel semantic segmentation algorithm
- Convolution & Deconvolution layers
- Fully convolutional network integrated with deep deconvolution network and makes proposal-wise prediction
- Identifies detailed structures and handles objects in multiple scales naturally
Overview - What is and what is not

• Semantic segmentation
 – Scene labeling
 – Pixel-wise classification

Semantically meaningful parts + classify each part into predetermined classes

Classify each pixel!
Problem: Background

• Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling problems based on CNN

• Conditional random field (CRF) is optionally applied to the output map for fine segmentation

• Network accepts a whole image as an input and performs fast and accurate inference
Problem: Limitations

- Fixed-size receptive field

 The object that is substantially larger or smaller than the receptive field may be fragmented or mislabeled.

 Small objects are often ignored and classified as background.
Problem: Limitations

(a) Inconsistent labels due to large object size
Problem: Limitations

(b) Missing labels due to small object size
Related Work

Object proposals
Contributions

- A multi-layer deconvolution network, which is composed of deconvolution, unpooling, and rectified linear unit (ReLU) layers

- Free from scale issues found in FCN-based methods and identifies finer details of an object

- PASCAL VOC 2012 dataset best accuracy with FCN
Network Model

Approximately 252M parameters in total
Pooling & Unpooling

Example specific
Convolution & Deconvolution

Convolution

Deconvolution

Class specific
Training Stage

- **Batch Normalization**
 - Internal covariate shift problem

- **Two-stage Training**
 - crop object instances using ground-truth annotations
 - utilize object proposals to construct more challenging examples
Segmentation Maps Integration

Formula

\[P(x, y, c) = \max_i G_i(x, y, c), \quad \forall i, \quad (1) \]

\[P(x, y, c) = \sum_i G_i(x, y, c), \quad \forall i. \quad (2) \]
Experimental Setup

- PASCAL VOC 2012 segmentation dataset
- All training and validation images are used to train
- They used augmented segmentation annotations
 - Extend the bbox 1.2 times larger to include local context around the object
 - Object & background labeling
 - 250 × 250 input image randomly cropped to 224 × 224 with optional horizontal + flipping
 - The number of training examples is 0.2M and 2.7M in the first and the second stage
Experimental Setup

- Caffe framework
- Stochastic gradient descent with momentum
- Initial learning rate, momentum and weight; 0.01, 0.9 and 0.0005
- VGG 16-layer net pre-trained on ILSVRC
- Network converges after approximately 20K and 40K SGD iterations with mini-batch of 64 samples
- Training takes 6 days (2 days for the first stage and 4 days for the second stage)
- Nvidia GTX Titan X GPU with 12G memory
Inference

• For each testing image, we generate approximately 2000 object proposals, and select top 50 proposals based on their objectness scores

• Compute pixel-wise maximum to aggregate proposal-wise predictions
Evaluation Metrics

- *comp6* evaluation protocol;
 - intersection over Union (IoU) between ground truth and predicted segmentations
Visualization of activations
Results

- CRF increase approximately 1% point

- Ensemble with FCN-8s improves mean IoU about 10.3% and 3.1% point with respect to FCN-8s and DeconvNet
Results - Comparisons

Evaluation results on PASCAL VOC 2012 test set. (algorithms trained without additional data)

<table>
<thead>
<tr>
<th>Method</th>
<th>bkg</th>
<th>aero</th>
<th>bike</th>
<th>bird</th>
<th>boat</th>
<th>bottle</th>
<th>bus</th>
<th>car</th>
<th>cat</th>
<th>chair</th>
<th>cow</th>
<th>table</th>
<th>dog</th>
<th>horse</th>
<th>mbk</th>
<th>person</th>
<th>plant</th>
<th>sheep</th>
<th>sofa</th>
<th>train</th>
<th>tv</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDeconvNet+CRF</td>
<td>93.1</td>
<td>89.9</td>
<td>39.3</td>
<td>79.7</td>
<td>63.9</td>
<td>68.2</td>
<td>87.4</td>
<td>81.2</td>
<td>86.1</td>
<td>28.5</td>
<td>77.0</td>
<td>62.0</td>
<td>79.0</td>
<td>80.3</td>
<td>83.6</td>
<td>80.2</td>
<td>58.8</td>
<td>83.4</td>
<td>54.3</td>
<td>80.7</td>
<td>65.0</td>
<td>72.5</td>
</tr>
<tr>
<td>DeepLab-CRF</td>
<td>93.1</td>
<td>84.4</td>
<td>54.5</td>
<td>81.5</td>
<td>63.6</td>
<td>65.9</td>
<td>85.1</td>
<td>79.1</td>
<td>83.4</td>
<td>30.7</td>
<td>74.1</td>
<td>59.8</td>
<td>79.0</td>
<td>76.1</td>
<td>83.2</td>
<td>80.8</td>
<td>59.7</td>
<td>82.2</td>
<td>50.4</td>
<td>73.1</td>
<td>63.7</td>
<td>71.6</td>
</tr>
<tr>
<td>TTI-Zoomout-16</td>
<td>89.8</td>
<td>81.9</td>
<td>35.1</td>
<td>78.2</td>
<td>57.4</td>
<td>56.5</td>
<td>80.5</td>
<td>74.0</td>
<td>79.8</td>
<td>22.4</td>
<td>69.6</td>
<td>53.7</td>
<td>74.0</td>
<td>76.0</td>
<td>76.6</td>
<td>68.8</td>
<td>44.3</td>
<td>70.2</td>
<td>40.2</td>
<td>68.9</td>
<td>55.3</td>
<td>64.4</td>
</tr>
<tr>
<td>FCN8s</td>
<td>91.2</td>
<td>76.8</td>
<td>34.2</td>
<td>68.9</td>
<td>49.4</td>
<td>60.3</td>
<td>75.3</td>
<td>74.7</td>
<td>77.6</td>
<td>21.4</td>
<td>62.5</td>
<td>46.8</td>
<td>71.8</td>
<td>63.9</td>
<td>76.5</td>
<td>73.9</td>
<td>45.2</td>
<td>72.4</td>
<td>37.4</td>
<td>70.9</td>
<td>55.1</td>
<td>62.2</td>
</tr>
<tr>
<td>MSRA-CFM</td>
<td>87.7</td>
<td>75.7</td>
<td>26.7</td>
<td>69.5</td>
<td>48.8</td>
<td>65.6</td>
<td>81.0</td>
<td>69.2</td>
<td>73.3</td>
<td>30.0</td>
<td>68.7</td>
<td>51.5</td>
<td>69.1</td>
<td>68.1</td>
<td>71.7</td>
<td>67.5</td>
<td>50.4</td>
<td>66.5</td>
<td>44.4</td>
<td>58.9</td>
<td>53.5</td>
<td>61.8</td>
</tr>
<tr>
<td>Hypercolumn</td>
<td>88.9</td>
<td>68.4</td>
<td>27.2</td>
<td>68.2</td>
<td>47.6</td>
<td>61.7</td>
<td>76.9</td>
<td>72.1</td>
<td>71.1</td>
<td>24.3</td>
<td>59.3</td>
<td>44.8</td>
<td>62.7</td>
<td>59.4</td>
<td>73.5</td>
<td>70.6</td>
<td>52.0</td>
<td>63.0</td>
<td>38.1</td>
<td>60.0</td>
<td>54.1</td>
<td>59.2</td>
</tr>
</tbody>
</table>
Results
Results - Strengths

Better results
Results - Strengths

(a) Input image
(b) FCN-8s
(c) Ours
Results - Weakness

Worse than FCN results
Results

Ensemble results
Conclusions & Future Directions

- A novel semantic segmentation algorithm by learning a deconvolution network
- Elimination of fixed-size receptive field limit in the fully convolutional network
- Ensemble approach of FCN + CRF
- State-of-the-art performance in PASCAL VOC 2012 without external data
- A bigger network with better proposals