Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Mergesort

Feb. 18, 2016

Basic plan.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

Mergesort overview

Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo]\) to \(a[mid]\) and \(a[mid+1]\) to \(a[hi]\), replace with sorted subarray \(a[lo]\) to \(a[hi]\).
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

<table>
<thead>
<tr>
<th>a[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>aux[]</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

<table>
<thead>
<tr>
<th>a[]</th>
<th>A</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>$a[]$</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>$a[]$</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>$a[]$</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>$a[]$</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum in each subarray

<table>
<thead>
<tr>
<th>aux[]</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$ aux[] $ E E G M R A C E R T

compare minimum in each subarray

$ a[] $ A C E E R A C E R T

$ k $ k

$ a[] $ A C E E R A C E R T

$ i $ i

$ j $ j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$ aux[] $ E E G M R A C E R T

compare minimum in each subarray

$ a[] $ A C E E R A C E R T

$ k $ k

$ a[] $ A C E E R A C E R T

$ i $ i

$ j $ j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$ aux[] $ E E G M R A C E R T

compare minimum in each subarray

$ a[] $ A C E E R A C E R T

$ k $ k

$ a[] $ A C E E R A C E R T

$ i $ i

$ j $ j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$ aux[] $ E E G M R A C E R T

compare minimum in each subarray

$ a[] $ A C E E R A C E R T

$ k $ k

$ a[] $ A C E E R A C E R T

$ i $ i

$ j $ j
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

1. $a[]$: A C E E G C E R T
2. Compare minimum in each subarray
3. $aux[]$: E E G M R A C E R T
4. k
5. i
6. j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

1. $a[]$: A C E E G C E R T
2. Compare minimum in each subarray
3. $aux[]$: E E G M R A C E R T
4. k
5. i
6. j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

1. $a[]$: A C E E G M E R T
2. Compare minimum in each subarray
3. $aux[]$: E E G M R A C E R T
4. k
5. i
6. j

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

1. $a[]$: A C E E G M E R T
2. Compare minimum in each subarray
3. $aux[]$: E E G M R A C E R T
4. k
5. i
6. j
Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

Abstract in-place merge

compare minimum in each subarray

one subarray exhausted, take from other
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo] \) to \(a[mid] \) and \(a[mid+1] \) to \(a[hi] \), replace with sorted subarray \(a[lo] \) to \(a[hi] \).

<table>
<thead>
<tr>
<th>(a[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td></td>
</tr>
</tbody>
</table>

one subarray exhausted, take from other

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td></td>
</tr>
</tbody>
</table>

both subarrays exhausted, done

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td></td>
</tr>
</tbody>
</table>

Merging

Q. How to combine two sorted subarrays into a sorted whole.

A. Use an auxiliary array.

<table>
<thead>
<tr>
<th>(a[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>(j)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

input copy

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td></td>
</tr>
</tbody>
</table>

merged result

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Merging: Java implementation

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    { // merge
        if      (i > mid)              a[k] = aux[j++];
        else if (j > hi)               a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else                           a[k] = aux[i++];
    }
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```

Mergesort: Java implementation

```java
public class Merge
{
    private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
    {
        /* as before */
    }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort (a, aux, lo, mid);
        sort (a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    {
        aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
    }
}
```

Mergesort: trace

```
<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>L</td>
</tr>
<tr>
<td>O</td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

Trace of merge results for top-down mergesort

result after recursive call
```

Mergesort: animation

```
http://www.sorting-algorithms.com/merge-sort
```

50 random items
Proposition. Mergesort uses at most $N \lg N$ compares and $6N \lg N$ array accesses to sort any array of size N.

Pf sketch. The number of compares $C(N)$ and array accesses $A(N)$ to mergesort an array of size N satisfy the recurrences:

$$C(N) \leq C([N/2]) + C([N/2]) + N \text{ for } N > 1, \text{ with } C(1) = 0.$$ $A(N) \leq A([N/2]) + A([N/2]) + 6N \text{ for } N > 1, \text{ with } A(1) = 0.$

We solve the recurrence when N is a power of 2.

$$D(N) = 2D(N/2) + N, \text{ for } N > 1, \text{ with } D(1) = 0.$$
Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 2. [assuming N is a power of 2]

Divide-and-conquer recurrence: proof by expansion

Divide-and-conquer recurrence: proof by induction

Proposition. If $D(N)$ satisfies $D(N) = 2D(N/2) + N$ for $N > 1$, with $D(1) = 0$, then $D(N) = N \lg N$.

Pf 3. [assuming N is a power of 2]

• Base case: $N = 1$.
• Inductive hypothesis: $D(N) = N \lg N$.
• Goal: show that $D(2N) = (2N) \lg (2N)$.

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.

Pf. The array aux[] needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, 1969]
Mergesort: practical improvements

Stop if already sorted.
• Is biggest item in first half ≤ smallest item in second half?
• Helps for partially-ordered arrays.

A B C D E F G H I J
M N O P Q R S T U V
A B C D E F G H I J K
M N O P Q R S T U V

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 if (!less(a[mid+1], a[mid])) return;
 merge(a, aux, lo, mid, hi);
}

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) aux[k] = a[j++];
 else if (j > hi) aux[k] = a[i++];
 else if (less(a[j], a[i])) aux[k] = a[j++];
 else aux[k] = a[i++];
 }
}

Bottom-up mergesort

Basic plan.
• Pass through array, merging subarrays of size 1.
• Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!

Eliminate the copy to the auxiliary array. Save time (but not space)
by switching the role of the input and auxiliary array in each recursive
call.

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) aux[k] = s[j++];
 else if (j > hi) aux[k] = s[i++];
 else if (less(s[j], s[i])) aux[k] = s[j++];
 else aux[k] = s[i++];
 }
}

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (aux, a, lo, mid);
 sort (aux, a, mid+1, hi);
 merge (aux, a, lo, mid, hi);
}

switch roles of aux[] and a[]

merge from a[] to aux[]
Bottom-up mergesort: Java implementation

```java
public class MergeBU
{
    private static Comparable[] aux;
    
    private static void merge(Comparable[] a, int lo, int mid, int hi)
    { /* as before */ }
    
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
                merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}
```

Bottom line. Concise industrial-strength code, if you have the space.

Bottom-up mergesort: visual trace

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

http://bl.ocks.org/mbostock/e65d9895da07c57e94bd
Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X.

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.
• Model of computation: decision tree.
• Cost model: # compares.
• Upper bound: $\sim N \lg N$ from mergesort.
• Lower bound: \uparrow

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.
• Assume array consists of N distinct values a_1 through a_N.
• Worst case dictated by height h of decision tree.
• Binary tree of height h has at most 2^h leaves.
• $N!$ different orderings \Rightarrow at least $N!$ leaves.

Decision tree (for 3 distinct items a, b, and c)

Proposition. Any compare-based sorting algorithm must use at least $\lg (N!) \sim N \lg N$ compares in the worst-case.

Pf.
• Assume array consists of N distinct values a_1 through a_N.
• Worst case dictated by height h of decision tree.
• Binary tree of height h has at most 2^h leaves.
• $N!$ different orderings \Rightarrow at least $N!$ leaves.

Stirling’s formula
Complexity of sorting

Model of computation. Allowable operations.
Cost model. Operation count(s).
Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.
• Model of computation: decision tree.
• Cost model: \# compares.
• Upper bound: \(\sim N \lg N \) from mergesort.
• Lower bound: \(\sim N \lg N \).
• Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

Complexity results in context

Other operations? Mergesort is optimal with respect to number of compares (e.g., but not with respect to number of array accesses).

Space?
• Mergesort is not optimal with respect to space usage.
• Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal.
[stay tuned]

Lessons. Use theory as a guide.
Ex. Don’t try to design sorting algorithm that guarantees \(\frac{1}{2} N \lg N \) compares.

Lower bound may not hold if the algorithm has information about:
• The initial order of the input.
• The distribution of key values.
• The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input, we may not need \(N \lg N \) compares.

Duplicate keys. Depending on the input distribution of duplicates, we may not need \(N \lg N \) compares.

Digital properties of keys. We can use digit/character compares instead of key compares for numbers and strings.

Sort music library by artist name
Sort music library by song name

Comparable interface: sort using a type's natural order.

```java
public class Date implements Comparable<Date> {
    private final int month, day, year;
    public Date(int m, int d, int y) {
        month = m;
        day = d;
        year = y;
    }
    public int compareTo(Date that) {
        if (this.year < that.year) return -1;
        if (this.year > that.year) return +1;
        if (this.month < that.month) return -1;
        if (this.month > that.month) return +1;
        if (this.day < that.day) return -1;
        if (this.day > that.day) return +1;
        return 0;
    }
}
```

Comparable interface: review

Required property. Must be a total order.

Ex. Sort strings by:
- Natural order. Now is the time
- Case insensitive. is Now the time
- Spanish. café cafetero cuarto churro nube ñoño
- British phone book. McKinley MacIntosh
- ...
Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

- Use `Object` instead of `Comparable`.
- Pass `Comparator` to `sort()` and `less()` and use it in `less()`.

```java
public static void sort(Object[] a, Comparator comparator)
{
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{  return c.compare(v, w) < 0;   }

private static void exch(Object[] a, int i, int j)
{  Object swap = a[i]; a[i] = a[j]; a[j] = swap;  }
```

insertion sort using a Comparator

```
Arrays.sort(a, Student.BY_NAME);
Arrays.sort(a, Student.BY_SECTION);
```

Comparator interface: implementing

To implement a comparator:

- Define a (nested) class that implements the `Comparator` interface.
- Implement the `compare()` method.

```java
public class Student
{
    public static final Comparator<Student> BY_NAME    = new ByName();
    public static final Comparator<Student> BY_SECTION = new BySection();
    private final String name;
    private final int section;
    ...

    private static class ByName implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        {  return v.name.compareTo(w.name);  }
    }

    private static class BySection implements Comparator<Student>
    {
        public int compare(Student v, Student w)
        {  return v.section - w.section;  }
    }
}
```

Polar order

Polar order: Given a point \(p \), order points by the polar angle they make with \(p \).

```
Arrays.sort(points, p.POLAR_ORDER);
```

Application: Graham scan algorithm for convex hull. [see previous lecture]
Polar order

Given a point \(p \), order points by the polar angle \(\theta \) they make with \(p \).

A ccw-based solution.

- If \(q_1 \) is above \(p \) and \(q_2 \) is below \(p \), then \(q_1 \) makes smaller polar angle.

Comparator interface: polar order

```java
public class Point2D {
    public final Comparator<Point2D> POLAR_ORDER = new PolarOrder();
    private final double x, y;
    ...

    private class PolarOrder implements Comparator<Point2D> {
        public int compare(Point2D q1, Point2D q2) {
            double dx1 = q1.x - x;
            double dy1 = q1.y - y;
            if      (dy1 == 0 && dy2 == 0) {
                /* handle horizontal case */
            } else if (dy1 >= 0 && dy2 < 0) return -1;
            else if (dy2 >= 0 && dy1 < 0) return +1;
            else return -ccw(Point2D.this, q1, q2);
        }
    }
}
```

Stability

A typical application. First, sort by name; then sort by section.

- Students in section 3 no longer sorted by name.

Q. Which sorts are stable?

A. Insertion sort and mergesort (but not selection sort or shellsort).
Stability: insertion sort

Proposition. Insertion sort is **stable**.

```java
public class Insertion {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
                exch(a, j, j-1);
    }
}
```

Stability: selection sort

Proposition. Selection sort is **not stable**.

Pf by counterexample. Long-distance exchange might move an item past some equal item.

```java
public class Selection {
    public static void sort(Comparable[] a) {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i+1; j < N; j++)
                if (less(a[j], a[i]))
                    exch(a, i, j);
    }
}
```

Stability: shellsort

Proposition. Shellsort sort is **not stable**.

```java
public class Shell {
    public static void sort(Comparable[] a) {
        int N = a.length;
        int h = 1;
        while (h < N/3) h = 3*h + 1;
        while (h >= 1) {
            for (int i = h; i < N; i++)
                for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                    exch(a, j, j-h);
            h = h/3;
        }
    }
}
```

Stability: mergesort

Proposition. Mergesort is **stable**.

Pf. Suffices to verify that merge operation is stable.

```java
public class Merge {
    private static Comparable[] aux;
    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        /* as before */
    }
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid+1, hi);
        merge(a, lo, mid, hi);
    }
    public static void sort(Comparable[] a) {
        /* as before */
    }
}
```
Proposition. Merge operation is stable.

```java
private static void merge(Comparable[] a, int lo, int mid, int hi)
{
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if      (i > mid)              a[k] = aux[j++];
        else if (j > hi)               a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else                           a[k] = aux[i++];
    }
}
```

Pf. Takes from left subarray if equal keys.