Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
BST representation in Java

Java definition. A BST is a reference to a root `Node`.

A `Node` is comprised of four fields:
- A `Key` and a `Value`.
- A reference to the left and right subtree.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

Key and `Value` are generic types; `Key` is `Comparable`.

BST implementation (skeleton)

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;

    private class Node {
        /* see previous slide */
    }

    public void put(Key key, Value val) {
        /* see next slides */
    }

    public Value get(Key key) {
        /* see next slides */
    }

    public void delete(Key key) {
        /* see next slides */
    }

    public Iterable<Key> iterator() {
        /* see next slides */
    }
}
```

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

- **compare H and S** (go left)
- **black nodes could match the search key**

##
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for \(H \)

\[
\begin{array}{c}
S \\
H \\
E \\
A \\
C \\
R \\
M \\
X \\
\end{array}
\]

compare \(H \) and \(E \)
(go right)

successful search for \(H \)

\[
\begin{array}{c}
S \\
H \\
E \\
A \\
C \\
R \\
M \\
X \\
\end{array}
\]

compare \(H \) and \(R \)
(go left)

successful search for \(H \)

\[
\begin{array}{c}
S \\
H \\
E \\
A \\
C \\
R \\
M \\
X \\
\end{array}
\]
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

- Successful search for H
- Unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

- **Insert.** If less, go left; if greater, go right; if null, insert.

- **Insert.** If less, go left; if greater, go right; if null, insert.

- **Insert.** If less, go left; if greater, go right; if null, insert.
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G

Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

Insert G
Insert. If less, go left; if greater, go right; if null, insert.

Insert. If less, go left; if greater, go right; if null, insert.

Insert. If less, go left; if greater, go right; if null, insert.

Insert. If less, go left; if greater, go right; if null, insert.
Get. Return value corresponding to given key, or null if no such key.

Cost. Number of compares is equal to 1 + depth of node.

BST search

Get

- **Successful search for R**
 - Black nodes could match the search key
 - R is less than S so look to the left
 - Found R (search hit)
 - So return value

- **Unsuccessful search for T**
 - Gray nodes cannot match the search key
 - T is greater than S so look to the right
 - Link is null so T is not in tree (search miss)

BST insert

Put

- **Associate value with key.**
 - Search for key, then two cases:
 - Key in tree ⇒ reset value.
 - Key not in tree ⇒ add new node.

BST insert: Java implementation

Put

- **Associate value with key.**

```java
public void put(Key key, Value val)
{  root = put(root, key, val);  }
private Node put(Node x, Key key, Value val)
{  if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
   if      (cmp  < 0) x.left  = put(x.left,  key, val);
   else if (cmp  > 0) x.right = put(x.right, key, val);
   else         x.val = val;
   return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST trace: standard indexing client

- Many BSTs correspond to the same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Tree shape
- Remark. Tree shape depends on order of insertion.

Correspondence between BSTs and quicksort partitioning
- Remark. Correspondence is 1-1 if array has no duplicate keys.
BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

But... Worst-case height is N.

(exponentially small chance when keys are inserted in random order)

How Tall is a Tree?

Bj"orn Reed
THI, P"arls, France
reed@friola.stt.jussieu.fr

ABSTRACT

Let H be the height of a random binary search tree on n elements. It is known that $H \leq 2 \log_{\log n} n$ with probability 0.999. From this we derive $\Pr[H \geq n / \log 2] = 0.01$. We also show that $\Pr[H = n] = o(1)$.

ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search</td>
<td>insert</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>$N/2$</td>
<td>N</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>$\lg N$</td>
<td>N</td>
<td>$\lg N$</td>
<td>$N/2$</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>$1.39 \lg N$</td>
<td>$1.39 \lg N$</td>
</tr>
</tbody>
</table>

Binary Search Trees

- BSTs
- Ordered operations
- Deletion
Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key ≤ to a given key.
Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor / ceiling?

Computing the floor

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree (if there is any key ≤ k in right subtree); otherwise it is the key in the root.

Computing the floor

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}

private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x;
 if (cmp < 0) return floor(x.left, key);
 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;
}
Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node; to implement \texttt{size()}, return the count at the root.

![Subtree counts](image)

Remark. This facilitates efficient implementation of \texttt{rank()} and \texttt{select()}.

BST implementation: subtree counts

```java
public int size()
{  return size(root);  }
private int size(Node x)
{  if (x == null) return 0;  return x.N;  }
```

```java
private class Node
{  private Key key;  private Value val;  private Node left;  private Node right;  private int N;  }
private Node put(Node x, Key key, Value val)
{  if (x == null) return new Node(key, val);  int cmp = key.compareTo(x.key);  if (cmp < 0) x.left = put(x.left, key, val);  else if (cmp > 0) x.right = put(x.right, key, val);  else if (cmp == 0)
      x.val = val;
  x.N = 1 + size(x.left) + size(x.right);  return x;  }
```

Rank

Rank. How many keys < \(k\)?

Easy recursive algorithm (4 cases!)

```java
public int rank(Key key)
{  if (k < 0) return null;  if (k >= size()) return null;  Node x = select(root, k);  return x.key;  }
private Node select(Node x, int k)
{  if (x == null) return null;  int t = size(x.left);  if (t > k)
      return select(x.left, k);  else if (t < k)
      return select(x.right, k-t-1);  else if (t == k)
      return x;
```

Selection

Select. Key of given rank.

```java
public Key select(int k)
{  if (k < 0) return null;  if (k >= size()) return null;  Node x = select(root, k);  return x.key;  }
```
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```java
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

Property. Inorder traversal of a BST yields keys in ascending order.

BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th></th>
<th>sequential search</th>
<th>binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>log N</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>1</td>
<td>N</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>N</td>
<td>l</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>N</td>
<td>log N</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>N</td>
<td>log N</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>N</td>
<td>l</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>N log N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

h = height of BST (proportional to log N if keys inserted in random order)

Binary Search Trees

- BSTs
- Ordered operations
- Deletion
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Iteration?</th>
<th>Operations on Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N/2</td>
<td>N2</td>
<td>no equals()</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N/2</td>
<td>N/2</td>
<td>yes compareTo()</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N/2</td>
<td>N</td>
<td>yes compareTo()</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.

BST deletion: lazy approach

To remove a node with a given key:
- Set its value to null.
- Leave key in tree to guide searches (but don’t consider it equal to search key).

Cost. \(\sim 2 \ln N' \) per insert, search, and delete (if keys in random order), where \(N' \) is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{  root = deleteMin(root);  }
private Node deleteMin(Node x)
{
  if (x.left == null) return x.right;
  x.left = deleteMin(x.left);
  x.N = 1 + size(x.left) + size(x.right);
  return x;
}
```

Hibbard deletion

To delete a node with key \(k \): search for node \(t \) containing key \(k \).

Case 0. [0 children] Delete \(t \) by setting parent link to null.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

Hibbard deletion: Java implementation

```java
public void delete(Key key) {
    root = delete(root, key);
}
private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = delete(x.left, key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
        if (x.right == null) return x.left;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.N = size(x.left) + size(x.right) + 1;
    return x;
}
```

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]
- Find successor x of t.
- Delete the minimum in t’s right subtree.
- Put x in t’s spot.

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

If we always delete from the same side, the shape of tree will be not random, the right subtrees are trimmed!

Surprising consequence. Trees not random ($!$) \Rightarrow \sqrt{N} per op. Longstanding open problem. Simple and efficient delete for BSTs.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>(linked list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>log N</td>
<td>N</td>
<td>N</td>
<td>log N</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 log N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

other operations also become √N if deletions allowed

Red-black BST. Guarantee logarithmic performance for all operations.