Mergesort

Feb. 23, 2017

Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

Basic plan.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>mid+1</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
</tr>
</tbody>
</table>

Mergesort overview

First Draft of a Report on the EDVAC

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

<table>
<thead>
<tr>
<th>lo</th>
<th>mid</th>
<th>mid+1</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
</tr>
</tbody>
</table>

copy to auxiliary array

aux[]
Goal: Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

Abstract in-place merge

compare minimum in each subarray

$\text{aux}[i..j]$
Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi]`.

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>
```

compare minimum in each subarray

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
```

Abstract in-place merge

Goal. Given two sorted subarrays `a[lo]` to `a[mid]` and `a[mid+1]` to `a[hi]`, replace with sorted subarray `a[lo]` to `a[hi]`.

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
</tr>
</tbody>
</table>
```

compare minimum in each subarray

```plaintext
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>
```
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$$a[]: \quad A \quad C \quad E \quad E \quad R \quad A \quad C \quad E \quad R \quad T \quad k$$

compare minimum in each subarray

$$aux[]: \quad E \quad E \quad G \quad M \quad R \quad A \quad C \quad E \quad R \quad T \quad i \quad j$$

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

$$a[]: \quad A \quad C \quad E \quad E \quad E \quad A \quad C \quad E \quad R \quad T \quad k$$

compare minimum in each subarray

$$aux[]: \quad E \quad E \quad G \quad M \quad R \quad A \quad C \quad E \quad R \quad T \quad i \quad j$$
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
   a[]  A  C  E  E  E  G  C  E  R  T
              k
```

compare minimum in each subarray

```
   aux[] E  E  G  M  R  A  C  E  R  T
        i    j
```

17

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
   a[]  A  C  E  E  E  G  M  E  R  T
              k
```

compare minimum in each subarray

```
   aux[] E  E  G  M  R  A  C  E  R  T
        i    j
```

18

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
   a[]  A  C  E  E  E  G  M  E  R  T
              k
```

compare minimum in each subarray

```
   aux[] E  E  G  M  R  A  C  E  R  T
        i    j
```

19

Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

```
   a[]  A  C  E  E  E  G  M  E  R  T
              k
```

compare minimum in each subarray

```
   aux[] E  E  G  M  R  A  C  E  R  T
        i    j
```

20
Abstract in-place merge

Goal. Given two sorted subarrays $a[lo]$ to $a[mid]$ and $a[mid+1]$ to $a[hi]$, replace with sorted subarray $a[lo]$ to $a[hi]$.

![Diagram](image1)

- **compare minimum in each subarray**

![Diagram](image2)

- **one subarray exhausted, take from other**

![Diagram](image3)

- **one subarray exhausted, take from other**

![Diagram](image4)
Abstract in-place merge

Goal. Given two sorted subarrays \(a[lo] \text{ to } a[mid] \) and \(a[mid+1] \text{ to } a[hi] \), replace with sorted subarray \(a[lo] \text{ to } a[hi] \).

<table>
<thead>
<tr>
<th>(a[])</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(aux[])</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>R</td>
<td>T</td>
</tr>
</tbody>
</table>

one subarray exhausted, take from other

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>(j)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

both subarrays exhausted, done

<table>
<thead>
<tr>
<th>(aux[])</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td>0</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Merging

Q. How to combine two sorted subarrays into a sorted whole.

A. Use an auxiliary array.

\(a[] \)	0	1	2	3	4	5	6	7	8	9	1	0	1	2	3	4	5	6	7	8	9
\(aux[] \)	E	E	G	M	R	A	C	E	R	T	E	E	G	M	R	A	C	E	R	T	
\(k \)	0	5																			
\(i \)	0	6																			
\(j \)	0	7																			

merged result

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>G</th>
<th>M</th>
<th>R</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abstract in-place merge trace
Merging: Java implementation

```java
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
    assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
    assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if      (i > mid)              a[k] = aux[j++];
        else if (j > hi)               a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else                           a[k] = aux[i++];
    }
    assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}
```

Mergesort: Java implementation

```java
public class Merge
{
    private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
    {
        // as before
    }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    {
        aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
    }
}
```

Mergesort: trace

```
<table>
<thead>
<tr>
<th>lo</th>
<th>i</th>
<th>mid</th>
<th>j</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>G</td>
<td>L</td>
<td>O</td>
<td>K</td>
</tr>
<tr>
<td>H</td>
<td>I</td>
<td>M</td>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>a[]</td>
<td>A</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>
```

```
result after recursive call
```

Mergesort: animation

```
http://www.sorting-algorithms.com/merge-sort
```

50 random items
Mergesort: animation

http://www.sorting-algorithms.com/merge-sort

Mergesort: number of compares and array accesses

Proposition. Mergesort uses at most \(N \lg N \) compares and \(6 N \lg N \) array accesses to sort any array of size \(N \).

Pf sketch. The number of compares \(C(N) \) and array accesses \(A(N) \) to mergesort an array of size \(N \) satisfy the recurrences:

\[
C(N) \leq C(\lfloor N/2 \rfloor) + C(\lceil N/2 \rceil) + N \quad \text{for} \ N > 1, \ \text{with} \ C(1) = 0.
\]

\[
A(N) \leq A(\lfloor N/2 \rfloor) + A(\lceil N/2 \rceil) + 6N \quad \text{for} \ N > 1, \ \text{with} \ A(1) = 0.
\]

We solve the recurrence when \(N \) is a power of 2.

\[
D(N) = 2D(N/2) + N, \ \text{for} \ N > 1, \ \text{with} \ D(1) = 0.
\]

Mergesort: empirical analysis

Running time estimates:
- Laptop executes \(10^8 \) compares/second.
- Supercomputer executes \(10^{12} \) compares/second.

<table>
<thead>
<tr>
<th>comparison type</th>
<th>computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
<td>instant</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1 week</td>
<td>instant</td>
</tr>
</tbody>
</table>

Bottom line. Good algorithms are better than supercomputers.

Divide-and-conquer recurrence: proof by picture

Proposition. If \(D(N) \) satisfies \(D(N) = 2D(N/2) + N \) for \(N > 1 \),

with \(D(1) = 0 \),

then \(D(N) = N \lg N \).

Pf 1. [assuming \(N \) is a power of 2]

\[
D(N) = 2(N/2) = N
\]

\[
D(N/4) = 2(N/4) = N
\]

\[
D(N/8) = 2(N/8) = N
\]

\[
D(N/2^n) = 2(N/2^n) = N
\]

\[
N/2 = N
\]

\[
N \lg N
\]
Divide-and-conquer recurrence: proof by expansion

Proposition. If \(D(N) \) satisfies \(D(N) = 2D(N/2) + N \) for \(N > 1 \), with \(D(1) = 0 \), then \(D(N) = N \lg N \).

Pf. [assuming \(N \) is a power of 2]

\[
\begin{align*}
D(N) &= 2D(N/2) + N \\
D(N)/N &= 2D(N/2)/N + 1 \\
&= D(N/2) + (N/2) + 1 \\
&= D(N/4) + (N/4) + 1 + 1 \\
&= D(N/8) + (N/8) + 1 + 1 + 1 \\
&\vdots \\
&= D(N/N) + 1 + 1 + \ldots + 1 \\
&= \lg N \\
\end{align*}
\]

\(\text{given} \), divide both sides by \(N \), algebra, apply to first term, stop applying, \(D(1) = 0 \).

Divide-and-conquer recurrence: proof by induction

Proposition. If \(D(N) \) satisfies \(D(N) = 2D(N/2) + N \) for \(N > 1 \), with \(D(1) = 0 \), then \(D(N) = N \lg N \).

Pf. [assuming \(N \) is a power of 2]

• **Base case:** \(N = 1 \).
• **Inductive hypothesis:** \(D(N) = N \lg N \).
• **Goal:** show that \(D(2N) = (2N) \lg (2N) \).

\[
\begin{align*}
D(2N) &= 2D(N) + 2N \\
&= 2N \lg N + 2N \\
&= 2N (\lg (2N) - 1) + 2N \\
&= 2N \lg (2N) \\
\end{align*}
\]

given, inductive hypothesis, algebra, QED.

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to \(N \).

Pf. The array \(aux[] \) needs to be of size \(N \) for the last merge.

Def. A sorting algorithm is **in-place** if it uses \(\leq c \log N \) extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, 1969]

Mergesort: practical improvements

Use insertion sort for small subarrays.
• Mergesort has too much overhead for tiny subarrays.
• Cutoff to insertion sort for \(\approx 7 \) items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
 if (hi <= lo + CUTOFF - 1) Insertion.sort(a, lo, hi);
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}
Mergesort: practical improvements

Stop if already sorted.
• Is biggest item in first half ≤ smallest item in second half?
• Helps for partially-ordered arrays.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 if (!less(a[mid+1], a[mid])) return;
 merge(a, aux, lo, mid, hi);
}

Mergesort: visualization

Mergesort: visualization

Mergesort: visualization

private static void merge(Comparable[] a, Comparable[] aux, int i, int j, int k)
{
 int i = i, j = j;
 for (int k = i; k <= k; k++)
 {
 if (i > j) aux[k] = a[i++];
 else if (j > k) aux[k] = a[j++];
 else if (less(a[j], a[i])) aux[k] = a[j++];
 else aux[k] = a[i++];
 }
}

Bottom-up mergesort

Basic plan.
• Pass through array, merging subarrays of size 1.
• Repeat for subarrays of size 2, 4, 8, 16,

Bottom line. No recursion needed!
Bottom-up mergesort: Java implementation

```java
public class MergeBU {
    private static Comparable[] aux;

    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        /* as before */
    }

    public static void sort(Comparable[] a) {
        int N = a.length;
        aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
                merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}
```

Bottom line. Concise industrial-strength code, if you have the space.

Bottom-up mergesort: visual trace

http://bl.ocks.org/mbostock/39566aca95eb03ddd526

http://bl.ocks.org/mbostock/e65d9895da07c57e94bd
Computational complexity. Framework to study efficiency of algorithms for solving a particular problem \(X \).

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for \(X \).

Lower bound. Proven limit on cost guarantee of all algorithms for \(X \).

Optimal algorithm. Algorithm with best possible cost guarantee for \(X \).

Example: sorting. Lower bound \(\sim \) upper bound

- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: \(\sim N \lg N \) from mergesort.
- Lower bound: ?
- Optimal algorithm: ?

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least \(\lg (N!) \sim N \lg N \) compares in the worst-case.

Pf.
- Assume array consists of \(N \) distinct values \(a_1 \) through \(a_N \).
- Worst case dictated by height \(h \) of decision tree.
- Binary tree of height \(h \) has at most \(2^h \) leaves.
- \(N! \) different orderings \(\Rightarrow \) at least \(N! \) leaves.

\[\begin{align*}
2^h & \geq N! \\
\Rightarrow h & \geq \lg (N!) \sim N \lg N
\end{align*} \]

Stirling’s formula
Complexity of sorting

- **Model of computation.** Allowable operations.
- **Cost model.** Operation count(s).
- **Upper bound.** Cost guarantee provided by some algorithm for X.
- **Lower bound.** Proven limit on cost guarantee of all algorithms for X.
- **Optimal algorithm.** Algorithm with best possible cost guarantee for X.

Example: sorting.
- Model of computation: decision tree.
- Cost model: \# compares.
- Upper bound: $\sim N \log N$ from mergesort.
- Lower bound: $\sim N \log N$.
- Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

Complexity results in context

Other operations? Mergesort is optimal with respect to number of compares (e.g., but not with respect to number of array accesses).

Space?
- Mergesort is not optimal with respect to space usage.
- Insertion sort, selection sort, and shellsort are space-optimal.

Challenge. Find an algorithm that is both time- and space-optimal. [stay tuned]

Lessons. Use theory as a guide.
- Ex. Don’t try to design sorting algorithm that guarantees $\frac{1}{2}N \log N$ compares.

Complexity results in context (continued)

Lower bound may not hold if the algorithm has information about:
- The initial order of the input.
- The distribution of key values.
- The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input, we may not need $N \log N$ compares.

Duplicate keys. Depending on the input distribution of duplicates, we may not need $N \log N$ compares.

Digital properties of keys. We can use digit/character compares instead of key compares for numbers and strings.

Sort music library by artist name
Sort music library by song name

Comparable interface: sort using a type’s natural order.

```java
public class Date implements Comparable<Date> {
    private final int month, day, year;
    public Date(int m, int d, int y) {
        month = m;
        day = d;
        year = y;
    }
    public int compareTo(Date that) {
        if (this.year < that.year) return -1;
        if (this.year > that.year) return +1;
        if (this.month < that.month) return -1;
        if (this.month > that.month) return +1;
        if (this.day < that.day) return -1;
        if (this.day > that.day) return +1;
        return 0;
    }
}
```

Comparable interface: review

Comparator interface: system sort

To use with Java system sort:
- Create Comparator object.
- Pass as second argument to Arrays.sort().

```java
String[] a;  // uses natural order
...
Arrays.sort(a);
...
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
...
Arrays.sort(a, Collator.getInstance(new Locale("es")));
...
Arrays.sort(a, new BritishPhoneBookOrder());
...
```
Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.
Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:
- Use `Object` instead of `Comparable`.
- Pass comparator to `sort()` and `less()` and use it in `less()`.

```java
public static void sort(Object[] a, Comparator comparator) {
    int N = a.length;
    for (int i = 0; i < N; i++)
        for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
            exch(a, j, j-1);
}
```

```java
private static boolean less(Comparator c, Object v, Object w) {
    return c.compare(v, w) < 0;
}
```

```java
private static void exch(Object[] a, int i, int j) {
    Object swap = a[i]; a[i] = a[j]; a[j] = swap;
}
```

Comparator interface: implementing

To implement a comparator:
- Define a (nested) class that implements the `Comparator` interface.
- Implement the `compare()` method.

```java
public class Student {
    public static final Comparator<Student> BY_NAME = new ByName();
    public static final Comparator<Student> BY_SECTION = new BySection();
    private final String name;
    private final int section;
    ...
    private static class ByName implements Comparator<Student> {
        public int compare(Student v, Student w) {
            return v.name.compareTo(w.name);
        }
    }
    private static class BySection implements Comparator<Student> {
        public int compare(Student v, Student w) {
            return v.section - w.section;
        }
    }
}
```

Stability

A typical application. First, sort by name; then sort by section.

```java
Selection.sort(a, Student.BY_NAME);
Selection.sort(a, Student.BY_SECTION);
```

A stable sort preserves the relative order of items with equal keys.

```java
Arrays.sort(a, Student.BY_NAME);
Arrays.sort(a, Student.BY_SECTION);
```
Which sorts are stable?
A. Insertion sort and mergesort (but not selection sort or shellsort).

Note. Need to carefully check code ("less than" vs "less than or equal to").

Stability: insertion sort

Proposition. Insertion sort is stable.

```
public class Insertion
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
                exch(a, j, j-1);
    }
}
```

Pf. Equal items never move past each other.

Stability: selection sort

Proposition. Selection sort is not stable.

```
public class Selection
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
        {
            int min = i;
            for (int j = i+1; j < N; j++)
                if (less(a[j], a[min]))
                    min = j;
            exch(a, i, min);
        }
    }
}
```

Pf by counterexample. Long-distance exchange might move an item past some equal item.

Stability: shellsort

Proposition. Shellsort sort is not stable.

```
public class Shell
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        int h = 1;
        while (h < N/3) h = 3*h + 1;
        while (h >= 1)
        {
            for (int i = h; i < N; i++)
                for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                    exch(a, j, j-h);
            h = h/3;
        }
    }
}
```

Pf by counterexample. Long-distance exchanges.
Stability: mergesort

Proposition. Mergesort is stable.

```java
public class Merge {
    private static Comparable[] aux;
    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        // as before */
    }
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) return;
        int mid = lo + (hi - lo) / 2;
        sort(a, lo, mid);
        sort(a, mid + 1, hi);
        merge(a, lo, mid, hi);
    }
    public static void sort(Comparable[] a) {
        // as before */
    }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```java
private static void merge(Comparable[] a, int lo, int mid, int hi) {
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k];
    int i = lo, j = mid + 1;
    for (int k = lo; k <= hi; k++)
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
}
```

Pf. Takes from left subarray if equal keys.