Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Today

- BSTs
- Ordered operations
- Deletion
Binary Search Tree (BST)

- Last lecture, we talked about binary search & linear search
 - One had high cost for reorganisation,
 - The other had high cost for searching

- In this lecture we will use Binary Trees, for searching

- Plan in a nutshell:
 - Assert a more strict property compared to the Heap-Property (in priority-queues), Remember what that was?
 - Know exactly which subtree to look for at each node
Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node’s key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:
- A `Key` and a `Value`.
- A reference to the left and right subtree.

```java
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

Key and Value are generic types; Key is Comparable.
public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }
}

root of BST
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

- **successful search for H**
- compare H and S (go left)
- black nodes could match the search key
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

compare H and E (go right)
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

- Successful search for H

![Binary search tree diagram]

- Compare H and H (search hit)
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

Unsuccessful search for G

![Binary search tree diagram]

- **Compare G and S**: (go left)
Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

compare G and E (go right)
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

![Binary search tree diagram](image)

unsuccessful search for G

compare G and H

(go left)
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G
Binary search tree operations

Search. If less, go left; if greater, go right; if equal, search hit.

unsuccessful search for G

no more tree (search miss)
Insert. If less, go left; if greater, go right; if null, insert.

insert G
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

![Binary search tree diagram]

insert G

- Compare G and S (go left)
- Insert G
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

```
insert G
```

```
    S
   / 
  G   X
 /     \
A      R
 /       \
C        H
 /         \
M
```

Insert. If less, go left; if greater, go right; if null, insert.

insert G

compare G and E
(go right)
Insert. If less, go left; if greater, go right; if null, insert.

insert G
Insert. If less, go left; if greater, go right; if null, insert.

insert G

compare G and R (go left)
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

`insert G`
Insert. If less, go left; if greater, go right; if null, insert.

- **Insert G**

![Binary search tree operations](image-url)
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

insert G

![Binary search tree diagram](image)
Insert. If less, go left; if greater, go right; if null, insert.

insert G

no more tree (insert here)
Insert. If less, go left; if greater, go right; if null, insert.

insert G
Binary search tree operations

Insert. If less, go left; if greater, go right; if null, insert.

```
insert G
```
Get. Return value corresponding to given key, or null if no such key.

Successful search for R
- Black nodes could match the search key.
- R is less than S so look to the left.

Unsuccessful search for T
- T is greater than S so look to the right.
- T is less than X so look to the left.
- Link is null so T is not in tree (search miss).

R is greater than E so look to the right
- Gray nodes cannot match the search key.

Found R (search hit) so return value
- Black nodes could match the search key.
- R is greater than E so look to the right.
Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.
Put. Associate value with key.

Search for key, then two cases:
- Key in tree ⇒ reset value.
- Key not in tree ⇒ add new node.
BST insert: Java implementation

Put. Associate value with key.

```java
public void put(Key key, Value val)
{  root = put(root, key, val);  }

private Node put(Node x, Key key, Value val)
{
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0)
      x.left  = put(x.left,  key, val);
    else if (cmp  > 0)
      x.right = put(x.right, key, val);
    else
      if (cmp == 0)
        x.val = val;
    return x;
}
```

Cost. Number of compares is equal to 1 + depth of node.
BST trace: standard indexing client

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>X</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>12</td>
</tr>
</tbody>
</table>

- **Red nodes** are new
- **Black nodes** are accessed in search
- **Gray nodes** are untouched
- **Changed value**
Many BSTs correspond to the same set of keys.
Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.
BST insertion: random order visualization

Ex. Insert keys in random order.
Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if array has no duplicate keys.
BSTs: mathematical analysis

Proposition. If \(N \) distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is \(\sim 2 \ln N \).

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If \(N \) distinct keys are inserted in random order, expected height of tree is \(\sim 4.311 \ln N \).

But… Worst-case height is \(N \).

(exponentially small chance when keys are inserted in random order)
ST implementations: frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

Costs for java FrequencyCounter 8 < tale.txt using BST
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>search hit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N/2</td>
<td>no</td>
<td>equals()</td>
</tr>
<tr>
<td>(unordered list)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>lg N</td>
<td>lg N</td>
<td>yes</td>
<td>compareTo()</td>
</tr>
<tr>
<td>(ordered array)</td>
<td>N</td>
<td>N/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>1.39 lg N</td>
<td>stay tuned</td>
<td>compareTo()</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binary Search Trees

- BSTs
- Ordered operations
- Deletion
Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key \(\leq \) to a given key.

Ceiling. Smallest key \(\geq \) to a given key.

Q. How to find the floor /ceiling?
Computing the floor

Case 1. [\(k\) equals the key at root]
The floor of \(k\) is \(k\).

Case 2. [\(k\) is less than the key at root]
The floor of \(k\) is in the left subtree.

Case 3. [\(k\) is greater than the key at root]
The floor of \(k\) is in the right subtree (if there is any key \(\leq k\) in right subtree); otherwise it is the key in the root.
Computing the floor

```java
public Key floor(Key key) {
    Node x = floor(root, key);
    if (x == null) return null;
    return x.key;
}

private Node floor(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0)  return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else           return x;
}
```
In each node, we store the number of nodes in the subtree rooted at that node; to implement \texttt{size()}, return the count at the root.

\textbf{Remark.} This facilitates efficient implementation of \texttt{rank()} and \texttt{select()}.
private class Node {
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

public int size() {
 return size(root);
}

private int size(Node x) {
 if (x == null) return 0;
 return x.N;
}

private Node put(Node x, Key key, Value val) {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else
 if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
}
Rank. How many keys \(< k \)?

Easy recursive algorithm (4 cases!)

```
public int rank(Key key)
{  return rank(key, root);  }

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if      (cmp  < 0) return rank(key, x.left);
    else if (cmp  > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```
Selection

Select. Key of given rank.

```java
public Key select(int k) {
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}

private Node select(Node x, int k) {
    if (x == null) return null;
    int t = size(x.left);
    if   (t > k)        return select(x.left, k);
    else if (t < k)     return select(x.right, k-t-1);
    else if (t == k)    return x;
    return x;
}
```

Finding `select(3)`

- The key of rank 3

Count N

- 8 keys in left subtree
- So search for key of rank 3 on the left

- 2 keys in left subtree
- So search for key of rank 3-2-1 = 0 on the right

- 0 keys in left subtree and searching for key of rank 0 so return H
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

public Iterable<Key> keys()
{
 Queue<Key> q = new Queue<Key>();
 inorder(root, q);
 return q;
}

private void inorder(Node x, Queue<Key> q)
{
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
}

Property. Inorder traversal of a BST yields keys in ascending order.
Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Inorder traversal

```plaintext
inorder(S)
inorder(E)
inorder(A)
enqueue A
inorder(C)
enqueue C
enqueue E
inorder(R)
inorder(H)
enqueue H
inorder(M)
enqueue M
enqueue R
enqueue S
inorder(X)
enqueue X
```

Recursive calls:
- S
- S E
- S E A
- S E A C
- S E R
- S E R H
- S E R H M
- S X

Queue:
- A
- C
- E
- H
- M
- R
- S
- X

Function call stack:
BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sequential search</th>
<th>Binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>(N)</td>
<td>(\lg N)</td>
<td>(h)</td>
</tr>
<tr>
<td>insert</td>
<td>(I)</td>
<td>(N)</td>
<td>(h)</td>
</tr>
<tr>
<td>min / max</td>
<td>(N)</td>
<td>(I)</td>
<td>(h)</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>(N)</td>
<td>(\lg N)</td>
<td>(h)</td>
</tr>
<tr>
<td>rank</td>
<td>(N)</td>
<td>(\lg N)</td>
<td>(h)</td>
</tr>
<tr>
<td>select</td>
<td>(N)</td>
<td>(I)</td>
<td>(h)</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>(N \log N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
</tbody>
</table>

\(h \) = height of BST (proportional to \(\log N \) if keys inserted in random order)

Order of growth of running time of ordered symbol table operations
Binary Search Trees

- BSTs
- Ordered operations
- Deletion
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.
To remove a node with a given key:

- Set its value to \texttt{null}.
- Leave key in tree to guide searches (but don't consider it equal to search key).

\begin{itemize}
\item \textbf{Cost.} \(\sim 2 \ln N' \) per insert, search, and delete (if keys in random order), where \(N' \) is the number of key-value pairs ever inserted in the BST.
\item \textbf{Unsatisfactory solution.} Tombstone (memory) overload.
\end{itemize}
Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{  root = deleteMin(root);  }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.N = 1 + size(x.left) + size(x.right);
    return x;
}
```
To delete a node with key \(k \): search for node \(t \) containing key \(k \).

Case 0. [0 children] Delete \(t \) by setting parent link to null.
To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t’s right subtree.
- Put x in t’s spot.
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;
 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}
Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

If we always delete from the same side, the shape of tree will be not random, the right subtrees are trimmed!

Surprising consequence. Trees not random (!) ⇒ \(\sqrt{N} \) per op.

Longstanding open problem. Simple and efficient delete for BSTs.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered iteration?</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (linked list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
</tbody>
</table>

- Other operations also become √N if deletions allowed.

Red-black BST. Guarantee logarithmic performance for all operations.