### Acknowledgement
The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.

### Balanced Search Trees
- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs

### Challenge.
Guarantee performance.

---

### Text

<table>
<thead>
<tr>
<th>Implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>
**2-3 tree**

You can read it as 2 or 3 children tree

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

**2-3 tree demo**

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

**2-3 tree**

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Our Aim is Perfect balance. Every path from root to null link has same length.

Perfect balance. Every path from root to null link has same length.

Symmetric order. Inorder traversal yields keys in ascending order.
2-3 tree demo

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

found H (search hit)

search for B

B is less than E (go left)

2-3 tree demo
2-3 tree demo

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

Search.  
- Compare search key against keys in node.  
- Find interval containing search key.  
- Follow associated link (recursively).

search for B

2-3 tree demo

search for B

Insert Operation

- Problem with Binary Search Tree: when the tree grows from leaves, it is possible to always insert to same branch. (worst-case)
- Instead of growing the tree from bottom, try to grow upwards.
  - If there is space in a leaf, simply insert it
  - Otherwise push nodes from bottom to top, if done recursively the tree will be balanced as it grows (increasing the height by introducing a new root)

- If we keep on inserting to same branch:

  **BST:**
  ```plaintext
  6
  7
  8
  9
  ```
  **2 or 3 Tree:**
  ```plaintext
  6
  7
  8
  9
  ```

2-3 tree demo

Insert into a 2-node at bottom.  
- Search for key, as usual.  
- Replace 2-node with 3-node.

Insert K

2-3 tree demo

insert K
• Search for key, as usual.
• Replace 2-node with 3-node.

search ends here

insert K

replace 2 node with 3-node containing K
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L

2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert L

Search in a 2-3 tree

• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

successful search for H

unsuccessful search for B

found H so return value (search hit)

B is between A and C so link in the middle

link is null so B is not in the tree (search miss)
**Insertion in a 2-3 tree**

**Case 1.** Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

**Insertion in a 2-3 tree**

**Case 2.** Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it’s a 4-node, split it into three 2-nodes.

**Local transformations in a 2-3 tree**

Splitting a 4-node is a local transformation: constant number of operations.
Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.
**2-3 tree: implementation?**

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

**Bottom line.** Could do it, but there's a better way.

---

**Multiple Node Types**

- In 2-3 Trees, the algorithm automatically balances the tree
- However, we have to keep track of two different node types, complicating the source code.
  - Nodes with one key
  - Nodes with two keys
- Instead of multiple nodes:
  - Multiple edge types; red and black
  - Rotations instead of Split

---

**Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)**

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
An equivalent definition

A BST such that:
- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
  - We will only allow one red link to simulate 2 keys in node
  - A node with two red links would be the same as having 3 keys
- Red links lean left (correct ordering)

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).
but runs faster because of better balance

public Val get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if      (cmp  < 0) x = x.left;
        else if (cmp  > 0) x = x.right;
        else
        if (cmp == 0)
        return x.val;
    }
    return null;
}

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒
  can encode color of links in nodes.

private static final boolean RED   = true;
private static final boolean BLACK = false;
private class Node
{
    Key key;
// key
    Value val;
// associated data
    Node left, right;
// subtrees
    int N;
// # nodes in this subtree
    boolean color;
// color of link from
//   parent to this node
    Node(Key key, Value val)
    {
        this.key   = key;
        this.val   = val;
        this.N     = 1;
        this.color = RED;
    }
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}

null links are black
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

private Node rotateLeft(Node h)
{
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

private Node rotateRight(Node h)
{
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Invariants. Maintains symmetric order and perfect black balance.

Private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.
Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.
- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

```
   B
   /\   \
  A   C
```

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

```
   B
   /\   \
  A   C
```

As with 2-3 Trees we have to update parents, bottom-to-top if we violate the conditions

```
   B
   /\   \
  A   C
```

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.
- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).

```
   B
   /\   \
  A   C
```

Repeat case 1 or case 2 up the tree (if needed).
Red-black BST insertion

insert S

Red-black BST insertion

insert E

Red-black BST insertion

insert A

two left reds in a row (rotate S right)
Red-black BST insertion

both children red
(flip colors)

red-black BST
Red-black BST insertion

red-black BST

insert R

E
A
S
R

red-black BST

E
A
S
R

red-black BST

E
A
S
R

insert C

E
A
C
S
R
Red-black BST insertion

right link red
(rotate A left)

Red-black BST insertion

dered-black BST

Red-black BST insertion

dered-black BST

Red-black BST insertion

dered-black BST
Red-black BST insertion

insert H

![Tree diagram with insert H]

Red-black BST insertion

two left reds in a row (rotate S right)

![Tree diagram with two left reds]

Red-black BST insertion

both children red (flip colors)

![Tree diagram with both children red]

Red-black BST insertion

both children red (flip colors)

![Tree diagram with both children red]
Red-black BST insertion

right link red
(rotate E left)

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST

Red-black BST insertion

red-black BST
Red-black BST insertion

- Insert X

Red-black BST insertion

- Insert X

Red-black BST insertion

- Red-black BST

Red-black BST insertion

- Red-black BST
Red-black BST insertion

Red-black BST insertion

Red-black BST insertion

Red-black BST insertion
Red-black BST insertion

insert P

Red-black BST insertion

insert P

two red children
(flip colors)

Red-black BST insertion

insert P

two red children
(flip colors)

Red-black BST insertion

insert P

right link red
(rotate E left)
Red-black BST insertion

two left reds in a row
(rotate R right)

Red-black BST insertion

two red children
(flip colors)

Red-black BST insertion

two red children
(flip colors)

Red-black BST insertion

red-black BST
Red-black BST insertion

Red-black BST insertion
Red-black BST insertion

![Red-black BST insertion diagram]

LLRB tree insertion trace

Standard indexing client.

![LLRB tree insertion trace diagram]

Insertion in a LLRB tree: Java implementation

```java
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if      (cmp  < 0) h.left  = put(h.left,  key, val);
    else if (cmp  > 0) h.right = put(h.right, key, val);
    else
        if (cmp == 0) h.val = val;
    if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h);
    if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left)  && isRed(h.right))     flipColors(h);
    return h;
}
```

Same code for both cases.
- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.
Insertion in a LLRB tree: visualization

Remark. Only a few extra lines of code to standard BST insert.

Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \log N$ in the worst case.

Pf.
- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \log N$ in typical applications.
ST implementations: frequency counter

ST implementations: summary

Balanced Search Trees

File system model
**B-trees (Bayer-McCreight, 1972)**

**B-tree.** Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.
- At least 2 key-link pairs at root.
- At least $M/2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

Choose $M$ as large as possible so that $M$ links fit in a page, e.g., $M = 1024$.

**Anatomy of a B-tree set ($M = 6$)**

**Insertion in a B-tree**
- Search for new key.
- Insert at bottom.
- Split nodes with $M$ key-link pairs on the way up the tree.

**Balance in B-tree**

**Proposition.** A search or an insertion in a B-tree of order $M$ with $N$ keys requires between $\log M/2 \cdot N$ and $\log M - 1 \cdot N$ probes.

**Pf.** All internal nodes (besides root) have between $M/2$ and $M - 1$ links.

**In practice.** Number of probes is at most 4.

**Optimization.** Always keep root page in memory.
Building a large B tree

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
- **Java**: `java.util.TreeMap`, `java.util.TreeSet`.
- **C++ STL**: `map`, `multimap`, `multiset`.
- **Linux kernel**: `completely fair scheduler`, `linux/rbtree.h`.

B-tree variants: B+, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
- **Windows**: HPFS.
- **Mac**: HFS, HFS+.
- **Linux**: ReiserFS, XFS, Ext3FS, JFS.
- **Databases**: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs

Geometric applications of BSTs

- kd trees
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2d range.
- Range count: number of keys that lie in a 2d range.

Geometric interpretation.
- Keys are point in the plane.
- Find/count points in a given $h$-$v$ rectangle.

Applications. Networking, circuit design, databases,...

2d orthogonal range search: grid implementation

Grid implementation.
- Divide space into $M$-by-$M$ grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add $(x, y)$ to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.

Space-time tradeoff.
- Space: $M^2 + N$.
- Time: $1 + N/M^2$ per square examined, on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: $\sqrt{N}$-by-$\sqrt{N}$ grid.

Running time. [if points are evenly distributed]
- Initialize data structure: $N$.
- Insert point: $1$.
- Range search: $1$ per point in range.

Clustering

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.
- Lists are too long, even though average length is short.
- Need data structure that gracefully adapts to data.
**Clustering**

Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

![USA map data](image)

13,000 points, 1000 grid squares

half the squares are empty

half the points are in 10% of the squares

**Space-partitioning trees**

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

**Space-partitioning trees: applications**

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.
- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

**Kd tree**

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!
**N-body simulation**

**Goal.** Simulate the motion of $N$ particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force.

$$ F = \frac{G m_1 m_2}{r^2} $$

Appel algorithm for N-body simulation

- Build 3d-tree with $N$ particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

**Key idea.** Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.

**Impact.** Running time per step is $N \log N$ instead of $N^2 \Rightarrow$ enables new research.