Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton University.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>

- **Challenge.** Guarantee performance.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
You can read it as 2 or 3 children tree
Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.
Allow 1 or 2 keys per node.
• 2-node: one key, two children.
• 3-node: two keys, three children.

Our Aim is Perfect balance. Every path from root to null link has same length.
 Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.

Perfect balance. Every path from root to null link has same length.

Symmetric order. Inorder traversal yields keys in ascending order.
2-3 tree demo

Search.

• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

search for H

H is less than M
(go left)
Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H

H is between E and J
(go middle)
2-3 tree demo

Search.
• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

search for H

found H (search hit)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

- B is less than E
 - (go left)
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

B is between A and C (go middle)
2-3 tree demo

Search.
- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for B

link is null (search miss)
Problem with Binary Search Tree: when the tree grows from leaves, it is possible to always insert to same branch. (worst-case)

Instead of growing the tree from bottom, try to grow upwards.
- If there is space in a leaf, simply insert it
- Otherwise push nodes from bottom to top, if done recursively the tree will be balanced as it grows (increasing the height by introducing a new root)

If we keep on inserting to same branch;

BST:
```
  9
 / 
8   
/ 
7   
/ 
6
```

2 or 3 Tree:
```
  8
 / 
6,7 
   
9
```
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

2-3 tree demo

insert K

K is less than M (go left)

```
E J
A C
H   L
P   S X
```
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
2-3 tree demo

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
2-3 tree demo

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

2-3 tree demo

```
insert Z
```

```
Z is greater than M
(go right)
```
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

```
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

```

```
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

```

```
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

```
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
2-3 tree demo

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

replace 3-node with temporary 4-node containing Z
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

The tree is split into two 2-nodes (pass middle key to parent).
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

2-3 tree demo
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

```
insert L
```

[Diagram showing a 2-3 tree with nodes A C, H P, and L, rooted at E R, with nodes S X added as a 3-node at the bottom.]

convert 3-node into 4-node
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

[Diagram of a 2-3 tree with keys A, C, H, L, P, S, X]
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2-3 tree demo

Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

split 4-node
(move L to parent)
2-3 tree demo

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.
Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
• Compare search key against keys in node.
• Find interval containing search key.
• Follow associated link (recursively).

Successful search for H

H is less than M so look to the left

unsuccessful search for B

B is less than M so look to the left

H is between E and L so look in the middle

B is between A and C so look in the middle

found H so return value (search hit)

link is null so B is not in the tree (search miss)
Case 1. Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
Case 2. Insert into a 3-node at bottom.
• Add new key to 3-node to create temporary 4-node.
• Move middle key in 4-node into parent.
• Repeat up the tree, as necessary.
• If you reach the root and it's a 4-node, split it into three 2-nodes.

Inserting D
search for D ends at this 3-node
add new key D to 3-node to make temporary 4-node

add middle key C to 3-node to make temporary 4-node
split 4-node into two 2-nodes pass middle key to parent
split 4-node into three 2-nodes increasing tree height by 1
Splitting a 4-node is a **local** transformation: constant number of operations.
Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case:
- Best case:
2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>worst-case cost (after N inserts)</th>
<th>average case (after N random inserts)</th>
<th>ordered iteration?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
</tbody>
</table>

Constants depend upon implementation.
Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Multiple Node Types

- In 2-3 Trees, the algorithm automatically balances the tree
- However, we have to keep track of two different node types, complicating the source code.
 - Nodes with one key
 - Nodes with two keys

- Instead of multiple nodes:
 - Multiple edge types; red and black
 - Rotations instead of Split
1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
 - We will only allow one red link to simulate 2 keys in node
 - A node with two red links would be the same as having 3 keys
- Red links lean left (correct ordering)

"perfect black balance"
Left-leaning red-black BSTs: 1–1 correspondence with 2-3 trees

Key property. 1–1 correspondence between 2–3 and LLRB.
Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster because of better balance

```java
public Val get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if      (cmp  < 0) x = x.left;
        else if (cmp  > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.
Red-black BST representation

Each node is pointed to by precisely one link (from its parent) ⇒ can encode color of links in nodes.

```java
private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
```

null links are black
Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```java
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right
(before)

private Node rotateRight(Node h)
{
 assert isRed(h.left);
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 return x;
}

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```
private Node rotateRight(Node h) {
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

rotate S right (after)

```
E
  
S
   
  h
```

<table>
<thead>
<tr>
<th>less than E</th>
<th>between E and S</th>
<th>greater than S</th>
</tr>
</thead>
</table>

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```java
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.
Warmup 1. Insert into a tree with exactly 1 node.

Left diagram:
- Root
- Search ends at this null link
- Red link to new node containing a
- Converts 2-node to 3-node

Right diagram:
- Root
- Search ends at this null link
- Attached new node with red link
- Rotated left to make a legal 3-node
Case 1. Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.
Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

Think of this as a split in 2-3 tree
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

As with 2-3 Trees we have to update parents, bottom-to-top if we violate the conditions.
Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).
Red-black BST insertion

insert S
Red-black BST insertion

insert E
Red-black BST insertion

insert A
Red-black BST insertion

insert A

two left reds in a row
(rotate S right)
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

- both children red
 - (flip colors)
Red-black BST insertion

red–black BST
Red-black BST insertion

red–black BST

Diagram of a red-black BST with nodes labeled A, E, and S.
Red-black BST insertion

insert R
Red-black BST insertion

red–black BST
Red-black BST insertion
Red-black BST insertion

insert C
Red-black BST insertion

right link red
(rotate A left)
Red-black BST insertion

red-black BST
Red-black BST insertion

red–black BST
Red-black BST insertion

red–black BST

```
  E
 /  \
C    S
|    |  \
A    R
```
Red-black BST insertion

insert H
Red-black BST insertion

two left reds in a row
(rotate S right)
Red-black BST insertion

![Red-black BST insertion diagram]

Both children red (flip colors)
Red-black BST insertion

both children red
(flip colors)
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

red-black BST
Red-black BST insertion

red–black BST
Red-black BST insertion

red-black BST
Red-black BST insertion

insert X
Red-black BST insertion

insert X

right link red (rotate S left)
Red-black BST insertion

red-black BST
Red-black BST insertion
Red-black BST insertion

red–black BST

A
C
E
H
R
S
X
Red-black BST insertion

insert M
Red-black BST insertion

insert M

right link red (rotate H left)
Red-black BST insertion

red–black BST

```plaintext
    R
   / 
  E   X
 /   / 
C   M  S
 / 
A   H
```
Red-black BST insertion

insert P
Red-black BST insertion

insert P

two red children (flip colors)
Red-black BST insertion

insert P

two red children (flip colors)
Red-black BST insertion

right link red
(rotate E left)
Red-black BST insertion

two left reds in a row
(rotate R right)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

two red children
(flip colors)
Red-black BST insertion

red-black BST
Red-black BST insertion

red-black BST
Red-black BST insertion

red-black BST

![Red-black BST insertion diagram]

Node A is inserted into the red-black BST, changing its structure.
Red-black BST insertion

insert L
Red-black BST insertion

insert L

right link red (rotate H left)
Red-black BST insertion

red-black BST

```
  M
 /   \
E     R
 |     |
C     L
 |     |
A     H
     |
```

```
  M
 /   \
E     R
 |     |
C     L
 |     |
A     H
     |
     |
P     S
     |
     |
X     
```
LLRB tree insertion trace

Standard indexing client.

Insertion of keys in increasing order:
- Insert S
- Insert E
- Insert A
- Insert R
- Insert C
- Insert H

Red-black BST and corresponding 2-3 tree.
Standard indexing client (continued).

Red-black tree insertion trace

- **X**
- **M**
- **P**
- **L**

Red-black BST

Corresponding 2-3 tree
Insertion in a LLRB tree: Java implementation

Same code for both cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

```java
private Node put(Node h, Key key, Value val)
{
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if      (cmp  < 0) h.left  = put(h.left,  key, val);
    else if (cmp  > 0) h.right = put(h.right, key, val);
    else
    {
        if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
        if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left)  && isRed(h.right)) flipColors(h);

        h.val = val;
    }
    return h;
}
```

- insert at bottom (and color red)
- split 4-node
- balance 4-node
- lean left
- only a few extra lines of code provides near-perfect balance
Insertion in a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in ascending order
Remark. Only a few extra lines of code to standard BST insert.

255 insertions in descending order
Remark. Only a few extra lines of code to standard BST insert.

255 random insertions
Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.
- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.
ST implementations: frequency counter

Costs for java FrequencyCounter 8 < tale.txt using BST

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Worst-case cost (after N inserts)</th>
<th>Average case (after N random inserts)</th>
<th>Ordered iteration?</th>
<th>Key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/2</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>lg N</td>
<td>N</td>
<td>N</td>
<td>lg N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>1.39 lg N</td>
</tr>
<tr>
<td>2-3 tree</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
<td>c lg N</td>
</tr>
<tr>
<td>red-black BST</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>2 lg N</td>
<td>1.00 lg N *</td>
</tr>
</tbody>
</table>

* exact value of coefficient unknown but extremely close to 1
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).

Probe. First access to a page (e.g., from disk to memory).

![slow](image1.png) ![fast](image2.png)

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-tree. Generalize 2-3 trees by allowing up to $M - 1$ key-link pairs per node.

- At least 2 key-link pairs at root.
- At least $M / 2$ key-link pairs in other nodes.
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

choose M as large as possible so that M links fit in a page, e.g., $M = 1024$
Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

Searching in a B-tree set \((M = 6)\)
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with \(M \) key-link pairs on the way up the tree.
Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log_{M-1} N$ and $\log_{M/2} N$ probes.

Pf. All internal nodes (besides root) have between $M/2$ and $M - 1$ links.

In practice. Number of probes is at most 4. \[M = 1024; N = 62 \text{ billion} \]

Optimization. Always keep root page in memory.
Building a large B tree

Each line shows the result of inserting one key in some page.

White: unoccupied portion of page

Black: occupied portion of page

Full page, about to split

Full page splits into two half-full pages then a new key is added to one of them.
Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
- **Java:** `java.util.TreeMap`, `java.util.TreeSet`.
- **C++ STL:** `map`, `multimap`, `multiset`.
- **Linux kernel:** completely fair scheduler, `linux/rbtree.h`.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
- **Windows:** HPFS.
- **Mac:** HFS, HFS+.
- **Linux:** ReiserFS, XFS, Ext3FS, JFS.
- **Databases:** ORACLE, DB2, INGRES, SQL, PostgreSQL.
Balanced Search Trees

- 2-3 search trees
- Red-black BSTs
- B-trees
- Geometric applications of BSTs
Geometric applications of BSTs

- kd trees
2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.
- Insert a 2d key.
- Delete a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2d range.
- Range count: number of keys that lie in a 2d range.

Geometric interpretation.
- Keys are point in the plane.
- Find/count points in a given \(h \times v \) rectangle.

Applications. Networking, circuit design, databases,...
Grid implementation.

- Divide space into M-by-M grid of squares.
- Create list of points contained in each square.
- Use 2d array to directly index relevant square.
- Insert: add (x, y) to list for corresponding square.
- Range search: examine only those squares that intersect 2d range query.
2d orthogonal range search: grid implementation costs

Space-time tradeoff.
- Space: $M^2 + N$.
- Time: $1 + N/M^2$ per square examined, on average.

Choose grid square size to tune performance.
- Too small: wastes space.
- Too large: too many points per square.
- Rule of thumb: \sqrt{N}-by-\sqrt{N} grid.

Running time. [if points are evenly distributed]
- Initialize data structure: N.
- Insert point: 1.
- Range search: 1 per point in range.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

- Lists are too long, even though average length is short.
- Need data structure that *gracefully* adapts to data.
Grid implementation. Fast and simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.
Space-partitioning trees

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtrees. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.
Space-partitioning trees: applications

Applications.
• Ray tracing.
• 2d range search.
• Flight simulators.
• N-body simulation.
• Collision detection.
• Astronomical databases.
• Nearest neighbor search.
• Adaptive mesh generation.
• Accelerate rendering in Doom.
• Hidden surface removal and shadow casting.
Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.
- Discovered by an undergrad in an algorithms class!
Goal. Simulate the motion of N particles, mutually affected by gravity.

http://www.youtube.com/watch?v=ua7YIN4eL_w

Brute force. For each pair of particles, compute force.

$$F = \frac{G m_1 m_2}{r^2}$$
Appel algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.
- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate particle.
Appel algorithm for N-body simulation

- Build 3d-tree with N particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION

ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics, but such simulations become costly for large N. Representing the universe as a tree structure with the particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several simultaneous attacks on the computation time required by the problem. These approaches range from algorithmic changes (replacing an $O(N^2)$ algorithm with an algorithm whose time-complexity is believed to be $O(N \log N)$) to data structure modifications, code-tuning, and hardware modifications. The changes reduced the running time of a large problem ($N = 10,000$) by a factor of four hundred. This paper describes both the particular program and the methodology underlying such speedups.

Impact. Running time per step is $N \log N$ instead of $N^2 \Rightarrow$ enables new research.