
CONTROL FLOW

Sevil ŞEN

Hacettepe University
November 2010

Content
• Sequence structures: Programs executed sequentially by

default

• Selection structures: if, if…else, and switch

• Repetition structures: while, do…while and for

In this lecture, you will learn
• To be able to use the if selection statement and if…else

selection statement to select actions.

• To be able to use the while and for repetition statements to
write loops (the repetition of steps in a program).

Sequential Structure

Flowcharting C’s sequence structure

Relational Operators
• The relational operators are <, >, <=, and >=.
• Take 2 expressions as operands
• Yield either the int value 0 (false) or the int value 1 (true).

Valid InvalidValid Invalid
a < 3 a =< b
a > b a < = b

Examples: assume a = 1, b=2.
Expression Value
a <= b 1

a < b-5 0

a + 10 / b <= -3 + 8 0

Equality Operators
• The equality operators are ======== and !=!=!=!=.
• Yield either the int value 0 or the int value 1.

Valid Invalid
x != -2.77 x = = y-1

x + 2.0 != 3.3/z x =! 44x + 2.0 != 3.3/z x =! 44

ch == ‘*’ ch = ‘*’

Examples: assume a=1, b=2, ch = ‘A’
Expression Value
a == b 0

a != b 1

ch < ‘B’ 1

a+b == -2 * 3 0

Equality Operators
• Note carefully that the two expressions

a == b and a = b

are visually similar.

• The expression • The expression
a == b is a test for equality.
a = b is an assignment expression.

Logical Operators
• The logical operators are && , ||, and !.
• Expressions connected by && or || are evaluated left to

right.
• Logical negation: !

Value of expression !expressionValue of expression !expression
zero 1
nonzero 0

Expression Value
!5 0
!!5 1
!(6 < 7) 0
!6 < 7 1
!(3-4) 0

Logical Operators

a b a&&b a ||b

zero zero 0 0

zero nonzero 0 1

nonzero zero 0 1

nonzero nonzero 1 1

Examples
• Given declarations:

int a =3, b = 3, c =3;

double x = 0.0, y =2.5;

char ch = ‘g’

Expression Value
!(a<b) && c 1
ch >= ‘a’ && ch <= ‘z’ 1
x || a && b – 3 0
a < b && x < y 0
a < b || x < y 1

• The precedence of && is higher than ||, but both operators
are of lower precedence than all unary, arithmetic and
relational operators. Their associativity is left to right.

Short-Circuit Evaluation
• For the expressions that contain the operands of && and

||, the expression process stops as soon as the outcome
true or false is known.

• Suppose expr1 is 0.• Suppose expr1 is 0.
expr1 && expr2 = 0 (expr2 will not be evaluated.)

• Suppose expr1 is nonzero.
expr1 || expr2 = 1 (expr2 will not be evaluated.)

Operator Precedence

Operators Associativity Type
++ -- + - ! (type) right to left unary

* / % left to right multiplicative
+ - left to right additive

< <= > >= left to right relational
== != left to right equality

&& left to right logical AND
|| left to right logical OR

?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 4.16 Operator precedence and associativity.

SELECTION STRUCTURE

The if Selection Statement

• Selection structure:
• Used to choose among alternative courses of action
• Pseudocode:

If student’s grade is greater than or equal to 60
Print “Passed”

• If condition true
• Print statement executed and program goes on to next statement
• If false, print statement is ignored and the program goes onto the

next statement
• Indenting makes programs easier to read

• C ignores whitespace characters

The if Selection Statement

if (grade >= 60)
printf("Passed\n");

No
semicolon

true

false

grade >= 60 print “Passed”

semicolon
(;) after if
statement

/* Determines if a number is even */

#include <stdio.h>

int main(void)

{

int value;

Write a program that determines if a number
entered by the user is even

int value;

printf(“Enter a number.\n”);

scanf(“%d”,&value);

if (value % 2 == 0)

printf(“\n%d is an even number.\n”,value);

return 0;

}

#include <stdio.h>

int main ()

{

int value1, value2, max=0;

printf(“Enter two values: \ n”);

Write a program that prints the maximum of two
numbers entered by the user

printf(“Enter two values: \ n”);

scanf(“%d %d”, &value1, &value2);

if (value1 > value2)

max = value1;

if (value1 <= value2)

max = value2;

printf(“%d\n”, max);

return 0;

}

The if..else Selection Statement
• if

• Only performs an action if the condition is true

• if…else
• Specifies an action to be performed both when the condition is • Specifies an action to be performed both when the condition is
true and when it is false

• Psuedocode:
If student’s grade is greater than or equal to 60

Print “Passed”
else

Print “Failed”

• Note spacing/indentation conventions

The if…else Selection Statement

• Flow chart of the if…else selection statement

truefalse
grade >= 60

print “Failed” print “Passed”

grade >= 60

The if…else Selection Statement

• Compound statement:
• Set of statements within a pair of braces

Example:
if (grade >= 60)

printf("Passed.\n");printf("Passed.\n");

else {

printf("Failed.\n");

printf("You must take this course again.\n");
}

• Without the braces, the statement
printf("You must take this course again.\n");

would be executed automatically

#include <stdio.h>

int main ()

{

int value1, value2, max=0;

printf(“Enter two values: \ n”);

Write a program that prints the maximum of two
numbers entered by the user

printf(“Enter two values: \ n”);

scanf(“%d %d”, &value1, &value2);

if (value1 > value2)

max = value1;

else

max = value2;

printf(“%d\n”, max);

return 0;

}

Examples
• Dangling else: an else attaches to the nearest if .

if (a == 10)

if (b==20)

printf(“***\n”);

else

printf(“### \ n”);printf(“### \ n”);

The if..else Selection Statement

• Ternary conditional operator (?:)

• Takes three arguments (condition, value if true, value if false)

Our pseudocode could be written:• Our pseudocode could be written:
printf("%s\n", grade >= 60 ? "Passed" : "Failed");

• Or it could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

Write a program that prints the minimum of three numbers
entered by the user

// Find the minimum of three values.

#include <stdio.h>

int main()

{

int a, b, c, min;

printf(“Enter three numbers:”);printf(“Enter three numbers:”);

scanf(“%d%d%d”, &a,&b,&c);

if (a < b)

min = a;

else

min = b;

if (c < min)

min = c;

printf(“The minimum value is %d\n”, min);

return 0;

}

Nested if /else structures

• Nested if…else statements

• Test for multiple cases by placing if…else selection
statements inside if…else selection statement

• Once condition is met, rest of statements skipped

• Deep indentation usually not used in practice

The if…else Selection Statement

• Pseudocode for a nested if…else statement

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

Nested if /else structures
• Its general form is:

if (expr1)
statement1

else if(expr2)
statement2

else if(expr3)else if(expr3)
statement3

……
else if(exprN)

statementN
else

default statement
next statement

Nested if’s
if(grade >= 90)

printf(“A”);

else if (grade >= 80)
printf(“B”);

else if (grade >= 70)
printf(“C”);

else if (grade >= 60) else if (grade >= 60)
printf(“D”);

else

printf(“F”);

The switch Multiple-Selection Structure

• switch
• Useful when a variable or expression is tested for all the values it

can assume and different actions are taken

• Series of case labels and an optional default case
switch (a_variable){

case value1:
actionsactions

case value2 :
actions
...

default:
actions

}

• break; exits from structure

The switch Multiple-Selection Structure

true

false

case a case a action(s) break

case b case b action(s) break

false

true

.

.

.

false

case z case z action(s) break
true

default action(s)

/*Counting letter grades */

char grade;
int aCount = 0, bCount = 0, cCount = 0,

dCount = 0, fCount = 0;

printf("Enter the letter grade.\n");
scanf(“%c”,&grade);

switch (grade) {
case 'A': ++aCount;

break ;

A program to count letter (upper case) grades

case 'B': ++bCount;
break ;

case 'C': ++cCount;
break ;

case 'D': ++dCount;
break ;

case 'F': ++fCount;
break ;

default : /* catch all other characters */
printf("Incorrect letter grade entered.");
printf(" Enter a new grade.\n");
break ;

}

/*Counting letter grades */

char grade;
int aCount = 0, bCount = 0, cCount = 0,

dCount = 0, fCount = 0;

printf("Enter the letter grade.\n");
scanf(“%c”,&grade);

switch (grade) {
case 'A':
case 'a': ++aCount;

break ;

A program to count letter (upper/lower case) grades

break ;
case 'B':
case 'b': ++bCount;

break ;
case 'C':
case 'c': ++cCount;

break ;
case 'D':
case 'd': ++dCount;

break ;
case 'F':
case 'f': ++fCount;

break ;
default : /* catch all other characters */

printf("Incorrect letter grade entered.");
printf(" Enter a new grade.\n");
break ;

}

Write a program that finds how many days are in the

month/year entered by the user.

April, June, September, November: 30 days
February : 28 days (if it is a leap year, then 29 days)
Other : 31 daysOther : 31 days

Leap Year:
• most years that are evenly divisible by 4 are leap years
• years that are evenly divisible by 100 are not leap years,

unless they are also evenly divisible by 400.

#include <stdio.h>

int main()

{

int month, year, days, leapyear;

printf(“Enter a month and a year:”);

scanf(“%d%d”, &month, &year);

if (((year % 4 == 0) && (year % 100 != 0)) || (year % 400 == 0))

leapyear = 1;

else

leapyear = 0;

switch (month){switch (month){

case 9 :

case 4 :

case 6 :

case 11: days=30;

break;

case 2 : days = (leapyear == 1)? 29: 28;

break;

default :

days = 31;

}

printf(“There are %d days in that month in that yea r.\n”, days);

return 0;

}

Exercises
1. Describe what the following conditional expression

means:
(x != 4) || (x != 17)

2. Write a conditional expression that is true2. Write a conditional expression that is true
i. if exactly one of a and b is true.
ii. if both a and b are true, or both are false.

Exercises
3. Write a C statement that

i. classifies a given character as an uppercase letter, a
lowercase letter or a special character.

ii. If the values of variables a, b, and c are all the same, print the ii. If the values of variables a, b, and c are all the same, print the
message “All equal” on the screen and find their sum.

Programming Exercise

• Write a C program that reads in three numbers, checks
whether they can be the lengths of the three sides of a triangle
(the length of each side must be less than the sum of the other
two); and finally determines whether the triangle is scalene,
isosceles, equilateral, or right-angled.

• Isosceles triangle: only two sides of the triangle are of equal
length;

• Equilateral triangle: all three sides are of equal length;
• Right-angled triangle: the square of the longest side is equal

to the summation of the squares of the other two sides;
• Scalene triangle: any triangle which do not meet any of the

criteria above.

REPETITION STRUCTURE

The Essentials of Repetition
• Loop

• Group of instructions computer executes repeatedly while some
condition remains true

• Counter-controlled repetition• Counter-controlled repetition
• Definite repetition: know how many times loop will execute
• Control variable used to count repetitions

• Sentinel-controlled repetition
• Indefinite repetition
• Used when number of repetitions not known
• Sentinel value indicates "end of data"

The while Repetition Structure

• Repetition structure

• Programmer specifies an action to be repeated while some
condition remains true

• e.g.:• e.g.:
While there are more items on my shopping list

Purchase next item and cross it off my list

• while loop repeated until condition becomes false

The while Repetition Structure

• Example:
int product = 2;

while (product <= 100)
product = 2 * product;

product <= 100 product = 2 * product
true

false

Example: Counter-Controlled Repetition

• A class of 10 students took a quiz. The grades (integers in
the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz

• The algorithm• The algorithm
Set total to zero
Set grade counter to one
While grade counter is less than or equal to 10

Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

/* Class average program with counter-controlled re petition */

#include <stdio.h>

int main()
{

int counter, grade, total, average;

/* initialization phase */
total = 0;
counter = 1;

/* processing phase */
while (counter <= 10) {

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94while (counter <= 10) {

printf("Enter grade: ");
scanf("%d", &grade);
total = total + grade;
counter = counter + 1;

}

/* termination phase */
average = total / 10.0;
printf("Class average is %d\n", average);

return 0; /* indicate program ended successfully */
}

Enter grade: 94
Class average is 81

A Similar Problem
• Problem becomes:

Develop a class-averaging program that will process an arbitrary
number of grades each time the program is run.

• Unknown number of students
• How will the program know to end?

• Use sentinel value
• Also called signal value, dummy value, or flag value
• Indicates “end of data entry.”
• Loop ends when user inputs the sentinel value
• Sentinel value chosen so it cannot be confused with a regular input

(such as -1 in this case)

Formulating Algorithms with Top-Down,
Stepwise Refinement
• Top-down, stepwise refinement

• Begin with a pseudocode representation of the top:
Determine the class average for the quiz

• Divide top into smaller tasks and list them in order:
Initialize variablesInitialize variables
Input, sum and count the quiz grades
Calculate and print the class average

• Many programs have three phases:
• Initialization: initializes the program variables
• Processing: inputs data values and adjusts program variables

accordingly
• Termination: calculates and prints the final results

/* Class average program with sentinel-controlled re petition */

#include <stdio.h>

int main()
{

float average;

int counter, grade, total;

/* initialization phase */
total = 0;
counter = 0;

/* processing phase */

printf("Enter grade, - 1 to end: ");

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

printf("Enter grade, - 1 to end: ");
scanf("%d", &grade);
while (grade != -1)
{

total = total + grade;
counter = counter + 1;
printf("Enter grade, -1 to end: ");
scanf("%d", &grade);

}
/* termination phase */

if (counter != 0) {
average = (float) total / counter;
printf("Class average is %.2f", average); }

else
printf("No grades were entered\n");

return 0; /* indicate program ended successfully */
}

The for Repetition Structure

• Format when using for loops

• Example:
for(counter = 1; counter <= 10; counter++)

printf("%d\n", counter);

• Prints the integers from one to ten
No
semicolon
(;) after for
statement

The for Repetition Structure
• For loops can usually be rewritten as while loops:

initialization;
while (loopContinuationTest) {

statement;
increment;

}

• Initialization and increment • Initialization and increment
• Can be comma-separated lists

for (i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);

• Initialization, loop-continuation, and increment can contain
arithmetic expressions. If x equals 2 and y equals 10
for (j = x; j <= 4 * x * y; j += y / x) equals to

for (j = 2; j <= 80; j += 5)

48

counter = 1counter = 1

Establish initial
value of control
variable

The for Flowchart

counter <= 10
true

false

counter++

Determine if final
value of control
variable has been
reached

Body of loop
(this may be many
statements)

Increment
the control
variable

printf("%d", counter);

/*Summation with for */

#include <stdio.h>

int main()
{

int sum = 0, number;
for (number = 2; number <= 100; number += 1)

sum += number;

Write a program that prints the sum of all numbers from 2 to 100

sum += number;
printf("Sum is %d\n", sum);
return 0;

}

Sum is 2550

The do/while Repetition Structure

• The do /while repetition structure

• Similar to the while structure

• Condition for repetition tested after the body of the loop is
performedperformed
• All actions are performed at least once

• Format:
do {

statement;
} while (condition);

The do/while Repetition Structure

action(s)

true

false

condition

/*Using the do/while repetition structure */

#include <stdio.h>
int main()
{

int counter = 1;

do {
printf("%d ", counter);
counter = counter + 1;

Prints the integers from one to ten

counter = counter + 1;
} while (counter <= 10);

return 0;
}

1 2 3 4 5 6 7 8 9 10

Nested control structures
• Problem

• A college has a list of test results (1 = pass, 2 = fail) for 10 students

• Write a program that analyzes the results
• If more than 8 students pass, print "Raise Tuition“

Notice that• Notice that
• The program must process 10 test results

• Counter-controlled loop will be used

• Two counters can be used
• One for number of passes, one for number of fails

• Each test result is a number—either a 1 or a 2
• If the number is not a 1, we assume that it is a 2

/* Class average program with sentinel-controlled re petition */

#include <stdio.h>

int main()
{

int passes = 0;

int failures = 0;

int student = 1;

int result;

while (student <= 10)
{

printf("Enter result: 1(Pass), 2(Fail): ");
scanf("%d", &result);

if (result == 1)
passes++;

else
failures++;

student = student + 1;
}

printf(“Passed:%d\n", passes);
printf(“Failed:%d\n", failures);

if (passes > 8)
printf(“Raise the tuition!");

return 0; /* indicate program ended successfully */
}

An Example Run
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1

Passed 9
Failed 1
Raise tuition

Nested Loops
• When a loop body includes another loop construct this is

called a nested loop.

• In a nested loop structure the inner loop is executed from
the beginning every time the body of the outer loop is
executed.executed.

value = 0;

for (i=1; i<=10; i=i+1)

for (j=1; j<=5; j=j+1)

value = value + 1;

• How many times the inner loop is executed?

Printing a triangle

• Write a program to draw a triangle like the following:
(input: the number of lines)

*

**

We can use a nested for-loop:

for (i=1; i<=num_lines; ++i)
{

for (j=1; j<=i; ++j)
printf("*");

printf("\n");
}

Nesting while and for
int main()

{

int num, count, total = 0;

printf("Enter a value or a negative number to end: ");
scanf("%d", &num);

while (num >= 0) {
for (count = 1; count <= num; count++)for (count = 1; count <= num; count++)

total = total + count;
printf(“%d %d”,num, total);
printf("Enter a value or a negative number to end: ");
scanf("%d", &num);
total = 0;

}
return 0;

}

This program reads numbers until the user enters a negative number. For
each number read, it prints the number and the summation of all values
between 1 and the given number.

#include <stdio.h>

int main()
{

char grade;

int aCount = 0, bCount = 0, cCount =0,

dCount = 0, eCount = 0 ;

printf("Enter the letter grades. Enter X to exit. \n");

while ((grade = getchar()) != ‘X’)
{

switch (grade) {
case 'A': ++ aCount ;case 'A': ++ aCount ;

break ;
case 'B': ++bCount;

break ;
case 'C': ++cCount;

break ;
case 'D': ++dCount;

break ;
case 'F': ++fCount;

break ;
default : /* catch all other characters */

printf("Incorrect letter grade entered.");
printf(“Enter a new grade.\n");
break ;

}
}

printf(“Total for each letter grade are:\n");

printf(“A: %d\n“, aCount);

printf(“B: %d\n“, bCount);

printf(“C: %d\n“, cCount);

printf(“D: %d\n“, dCount);

printf(“E: %d\n“, eCount);

printf(“F: %d\n“, gfCount);

return 0;

}

Sample Output:

Enter the letter grades. Enter X to exit.
A
B
C
C
A
F
C
E
Incorrect letter grade entered. Enter a new grade.
D
X
Totals for each letter grade are:
A: 2
B: 1
C: 3
D: 1
F: 1

The break and continue Statements

• break
• Causes immediate exit from a while, for, do…while or switch

statement

• Program execution continues with the first statement after the • Program execution continues with the first statement after the
structure

• Common uses of the break statement
• Escape early from a loop
• Skip the remainder of a switch statement

#include <stdio.h>

int main()
{

int x;

for (x = 1; x <= 10 ; x++)
{

if (x == 5) {
break ;

printf(“%d “, x);
} }

printf(“\nBroke out of the loop at x=%d “, x);
return 0;

}

1 2 3 4
Broke out of loop at x == 5

The break and continue Statements

• continue
• Skips the remaining statements in the body of a while, for or
do…while statement
• Proceeds with the next iteration of the loop

• while and do…while

• Loop-continuation test is evaluated immediately after the continue
statement is executed

• for

• Increment expression is executed, then the loop-continuation test is
evaluated

#include <stdio.h>

int main()
{

int x;

for (x = 1; x <= 10 ; x++)
{

if (x == 5) {
continue ;

printf(“%d “, x);
} }

printf(“\nUsed continue to skip printing the value 5 “);
return 0;

}

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

Structured-Programming Summary

T
F

if statement
(single selection)

TF
if…elsestatement

(double selection)

T
F

switch statement
(multiple selection)

break

Seq uence

F
T

F
break

T
F

break

...

.

.

.

Structured-Programming Summary

do…while statement

T

while statement for statement

T

F

F T

F

Programming Exercises

1. Write a program which calculates the factorial of
a number entered by the user

2. Write a program which prints the fibonacci
numbers until the nth number in the sequence numbers until the nth number in the sequence
(n is entered by the user)

3. Write a program which ask the user to enter two
numbers and one operator (*, /, +, -, %), and
prints the result of the selected operation on
these numbers.

