FILE INPUT/OUTPUT

Erkut ERDEM

Hacettepe University
December 2010

Content

- In this chapter, you will learn:
- To be able to create, read, write and update files.
- To become familiar with sequential access file processing.
- To become familiar with random-access file processing.

Introduction

- Data files
- Can be created, updated, and processed by C programs

- Are used for permanent storage of large amounts of data
- Storage of data in variables and arrays is only temporary

- When you use a file to store data for use by a program,
that file usually consists of text (alphanumeric data) and is
therefore called a text file.

e
The Data Hierarchy

- Data Hierarchy:

Bit — smallest data item
- Valueof O or 1
Byte — 8 bits
- Used to store a character
« Decimal digits, letters, and special symbols

Field — group of characters conveying meaning
- Example: your name

Record — group of related fields

- Represented by a struct ora class

- Example: In a payroll system, a record for a particular employee that
contained his/her identification number, name, address, etc.

-
The Data Hierarchy

- Data Hierarchy (continued):

- File — group of related records
- Example: payroll file

- Database — group of related files

‘ Sally ‘B'Iack ‘

| |
‘ Tom ‘B'Iue ‘ ‘ ‘
% Judy ‘Green ‘ ‘ ‘ File
‘ Iris ‘Orange ‘ ‘ ‘
‘ Randy ‘Red ‘ ‘ ‘
‘Judy ‘Gr‘een ‘ ‘ ‘ Record

&

Judy Field
fy

01001010 Byte (ASCIl character J)
&

1 Bit

Fig. 11.1 The data hierarchy.

-
Files and Streams

- C views each file as a sequence of bytes

- File ends with the end-of-file marker
- Or, file ends at a specified byte

- Stream created when a file is opened
- Provide communication channel between files and programs

- Opening a file returns a pointer to a FILE structure
- Example file pointers:
- stdin - standard input (keyboard)
- stdout - standard output (screen)
- stderr - standard error (screen)

-
Files and Streams

« FILE structure

- File descriptor
- Index into operating system array called the open file table

- File Control Block (FCB)
- Found in every array element, system uses it to administer the file

end-of-file marker

Fig. 11.2 C’sview of afile of nbytes.

-
Files and Streams

- Read/Write functions in standard library

- fscanf/ fprintf
- File processing equivalents of scanf and printf
- fgetc
- Reads one character from a file
- Takes a FILE pointer as an argument
- fgetc(stdin) equivalent to getchar()
- fputc
- Writes one character to a file
- Takes a FILE pointer and a character to write as an argument
- fputc('a', stdout) equivalentto putchar('a')
- fgets
- Reads a line from a file
- fputs
- Writes a line to a file

/*
Create a sequential file */
#i nclude <stdio. h>

I nt mai n()

| nt account;

char nanme[30];

doubl e bal ance;

10 FILE *cfPtr; [* cfPtr = clients.dat file pointer */

OCONOUIRRWN -
~—

12 If ((ctPtr = fopen("clients.dat", "w')) == NULL)

13 printf("File could not be opened\n");

14 el se {

15 printf("Enter t he account, nane, and bal ance.\n");
16 printf("Enter EOF to end input.\n");

17 prlntf("),

18 scanf (' 'Y 9% T " &account, nane, &bal ance);

19

20 while (!'feof (stdin)

21 fprintf(cfPtr, "% % % 2f\n", account, nane, bal ance);
22

23 printf("? ");

24 } scanf ("@@@@@af" &account, nane, &bal ance);

25

26

27 fclose(cfPtr);

28 }

29

30 return O;
31}

Program Output

Enter the account, name, and bal ance.
Enter ECF to end i nput.

100 Jones 24.98

200 Doe 345. 67

300 White 0.00

400 Stone -42.16

500 Rich 224.62

nNZ

N N)) N N Y

Creating a Sequential Access File

- Creating a File
- FILE *myPtr;
- Creates a FILE pointer called myPtr
- myPtr = fopen(f77ename, openmode);
- Function fopen returns a FILE pointer to file specified

- Takes two arguments — file to open and file open mode
- If open fails, NULL returned

Computer system Key combination

UNIX systems <return> <ctrl> d

IBM PC and compatibles <ctrl> z

Macintosh <ctrl>d

Fig. 11.4 End-of-file key combinations for various popular computer systems.

Creating a Sequential Access File

Mode Description

r Open a file for reading.

w Create a file for writing. If the file already eigsdiscard the current contents.
Append; open or create a file for writing at endilef.

r+ Open a file for update (reading and writing).

W+ Create a file for update. If the file already exjstiscard the current contents.

a+ Append; open or create a file for update; writinglone at the end of the f

rb Open a file for reading in binary mode.

wh Create a file for writing in binary mode. If thdefialready exists, discard the
current contents.

ab Append; open or create a file for writing at endilef in binary mode.

rb+ Open a file for update (reading and writing) indsyamode.

wh+ Create a file for update in binary mode. If the fillready exists, discard the
current contents.

ab+ Append; open or create a file for update in bimande; writing is done at the
end of the file.

Fig. 11.6 File open modes.

Creating a Sequential Access File

- fprintf
- Used to print to a file

- Like printf, except first argument is a FILE pointer (pointer to the file
you want to print in)

- feof (FILEpointer)

- Returns true if end-of-file indicator (no more data to process) is set for
the specified file

- fclose(FILEpointer)
- Closes specified file
- Performed automatically when program ends
- Good practice to close files explicitly

- Detalls

- Programs may process no files, one file, or many files

- Each file must have a unigue name and should have its own
pointer

Reading Data from a File

- Reading a sequential access file

- Create a FILE pointer, link it to the file to read
myPtr = fopen(“myfile.dat", "r");
Use fscanf to read from the file

- Like scanf, except first argument is a FILE pointer
fscanf(mypPtr, "%d%s%f'", &accounnt, name, &balance);

Data read from beginning to end
File position pointer
- Indicates number of next byte to be read / written

- Not really a pointer, but an integer value (specifies byte location)
- Also called byte offset

rewind(myPtr)
- Repositions file position pointer to beginning of file (byte 0)

{

OCoOoO~NOUITRRWNE

/* Reading and printing a sequential file */
#i ncl ude <stdi o. h>

I nt mai n()

I nt account:
char name[30];
doubl e bal ance;

FILE *cfPtr; [* cfPtr = clients.dat file pointer */

If ((cftPtr = fopen("clients.dat", "r")) == NULL)
printf("File could not be opened\n");

el se {
printf("% 10s% 13s%\n", "Account", "Nane", "Bal ance");

fscanf(cfPtr, "%%%If", &account, nane, &bal ance);

while (!feof (cfPtr)
printf("% 10d% 13s%. 2f\ n", account, nane, bal ance);
fscanf(cfPtr, "%%%f", &account, nane, &bal ance);

}
fclose(cfPtr); Account Nane Bal ance
} 100 Jones 24. 98
200 Doe 345. 67
return O; 300 Whi t e 0. 00
400 St one -42. 16

500 Ri ch 224. 62

Example: Merge two files

#i ncl ude <stdi o. h>
I nt mai n()
{ FILE *fileA, [* first input file */
fileB, [/ second input file */
fileC [/ output file to be created */
int numl, /* nunber to be read fromfirst file */
nun2; /* nunber to be read fromsecond file */
int f1, f2;

/* Open files for processing */
fileA = fopen("classl.txt","r");
fileB = fopen("class2.txt","r");
fileC = fopen("class.txt","w');

/* As long as there are nunbers in both files, read and conpare nunbers one
by one. Wite the snmaller nunber to the output file and read the next nunber
inthe file fromwhich the snaller nunber is read. */

fl1 = fscanf(fileA "%", &wunl);
f2 = fscanf(fileB, "%", &un?);

while ((f1'=ECF) && (f2!=ECF)){

i f (numl < nun®){
fprintf(fileC"%\n", numl);
fl1 = fscanf(fileA "%", &unl);

}

else if (nun2 < num) {
fprintf(fileC"%l\n", nun);
f2 = fscanf(fileB, "%", &un);

}

else { /* nunbs are equal :read fromboth files */
fprintf(fileC"%\n", numl);
fl1 = fscanf(fileA "%", &unil);
f2 = fscanf(fileB, "%", &un);

while (f11'=ECF){/* if reached end of second file, read
the remai ning nunbers fromfirst file and wite to
output file */
fprintf(fileC"%\n", numl);
fl1 = fscanf(fileA "%", &unl);
}
while (f21=ECF){ if reached the end of first file, read
the remai ni ng nunbers fromsecond file and wite
to output file */
fprintf(fileC"%\n", nun®);
f2 = fscanf(fileB, "%", &wun);

}

[* close files */
fclose(fileA);
fclose(fileB);
fclose(fileQO;
return O;

} /* end of nmain */

Reading Data from a Sequential Access File

- Sequential access file
- Cannot be modified without the risk of destroying other data

- Fields can vary in size
- Different representation in files and screen than internal representation
- 1, 34, -890 are all ints, but have different sizes on disk

300 White 0.00 400 Jones 32.87 (old data in file)
If we want to change White's name to Worthington,

300 Wort hington 0.00

:

300 Wiite 0.00 400 Jones 32.87 -
l Data gets overwritten

300 Wort hi ngt on 0. 00ones 32. 87 /

Random-Access Files

- Random access files
- Access individual records without searching through other records
- Instant access to records in a file
- Data can be inserted without destroying other data
- Data previously stored can be updated or deleted without overwriting

- Implemented using fixed length records
- Sequential files do not have fixed length records
0 100 200 300 400 500

L T T T e

100 100 100 100 100 100

bytes bytes bytes bytes bytes bytes

Creating a Randomly Accessed Flile

- Data in random access files

- Unformatted (stored as "raw bytes")

- All data of the same type (i nt s, for example) uses the same amount of
memory

- All records of the same type have a fixed length
- Data not human readable

Creating a Randomly Accessed Flile

- Unformatted I/O functions

- fwrite
- Transfer bytes from a location in memory to a file

- fread
- Transfer bytes from a file to a location in memory

- Example:
fwrite(&number, sizeof(int), 1, myPtr);
- &number — Location to transfer bytes from
- sizeof(int) — Number of bytes to transfer

- 1 - For arrays, number of elements to transfer
 In this case, "one element" of an array is being transferred

- myPtr — File to transfer to or from

Creating a Randomly Accessed Flile

- Writing structs
fwrite(&myObject, sizeof (struct myStruct), 1, myPtr);
- sizeof —returns size in bytes of object in parentheses
- To write several array elements
- Pointer to array as first argument
- Number of elements to write as third argument

/* Fig. 11.11: figll_1l1.c

Creating a randomly accessed file sequentially */
#include <stdio.h>

1
2
3
4
5 /* clientData structure definition */
6 struct clientData {

7 int acctNum; /* account number */

8 char lastName[15]; /* account last name */
9

char firstName[10]; /* account first name */

10 double balance; /* account balance */

11 }; /* end structure clientData */

12

13 1int main(Q

14 {

15 int i; /* counter */

16

17 /* create clientData with no information */

18 struct clientbata blankClient = { 0, "sevil"”, "sen", 5000.0 };
19

20 FILE *cfPtr; /* credit.dat file pointer */

22 /* fopen opens the file; exits if file cannot be opened */
23 if ((cfPtr = fopen("credit.dat”, "wb")) == NULL) {
24 printf("File could not be opened.\n");

25 } /* end if */
26 else {

27

28 /* output 100 blank records to file */

29 for (i =1; i <= 100; i++) {

30 fwrite(&lankClient, sizeof(struct clientbata), 1, cfPtr);
31 } /* end for */

32

33 fclose (cfptr); /* fclose closes the file */
34 } /* end else */

35

36 return 0; /* indicates successful termination */
37

38 } /* end main */

Writing Data Randomly to a Randomly
Accessed File

- fseek

- Sets file position pointer to a specific position
- fseek (pointer, offset, symbolic_constant) ;
- pointer — pointer to file
offset — file position pointer (O is first location)
symbolic_constant — specifies where in file we are reading from
SEEK_SET — seek starts at beginning of file
SEEK_CUR — seek starts at current location in file
SEEK_END — seek starts at end of file

1 /* Fig. 11.12: figll_12.c

2 writing to a random access file */

3 #include <stdio.h>

4

5 /* clientData structure definition */

6 struct clientbData {

7 int acctNum; /* account number */

8 char TlastName[15]; /* account last name */
9 char firstName[10]; /* account first name */
10 double balance; /* account balance */

11 }; /* end structure clientData */

12

13 int mainQ

14 {

15 FILE *cfpPtr; /* credit.dat file pointer */

16

17 /* create clientbata with no information */
18 struct clientbData client = { 0, "", "", 0.0 };
19

20 /* fopen opens the file; exits if file cannot be opened */
21 if (C cfpPtr = fopen("credit.dat"”, "rb+")) == NULL) {
22 printf("File could not be opened.\n");

23 } /* end if */

24 else {

25

26 /* require user to specify account number */

27 printf("Enter account number"

28 " (1 to 100, 0 to end input)\n? ");

29 scanf("%d", &client.acctNum);

30

31 /* user enters information, which is copied into file */
32 while (client.acctNum != 0) {

33

34 /* user enters last name, first name and balance */
35 printf("Enter lastname, firstname, balance\n? ");
36

37 /* set record lastName, firstName and balance value */
38 fscanf(stdin, "%s%s%1f", client.lastName,

39 client.firstName, &client.balance);

40

41 /* seek position in file of user-specified record */
42 fseek(cfPtr, (client.acctNum - 1) *

43 sizeof(struct clientData), SEEK_SET);

44

45 /* write user-specified information in file */

46 fwrite(&client, sizeof(struct clientbData), 1, cfPtr);
47

48 /* enable user to specify another account number */
49 printf("Enter account number\n? ");

50 scanf("%d", &client.acctNum);

51 } /* end while */

52

53 fclose(cfptr); /* fclose closes the file */
54 } /* end else */

55

56 return 0; /* indicates successful termination */
57

58 } /* end main */

Ent er account nunmber (1 to 100, O to end input)
? 37

Enter | astnane, firstnanme, bal ance
? Barker Doug 0. 00

Ent er account nunber

? 29

Enter | astnane, firstnanme, bal ance
? Brown Nancy -24.54

Ent er account nunber

? 96

Enter | astnane, firstnanme, bal ance
? Stone Sam 34. 98

Ent er account nunber

? 88

Enter | astnane, firstnanme, bal ance
? Smth Dave 258. 34

Ent er account nunber

? 33

Enter | astnane, firstnanme, bal ance
? Dunn Stacey 314. 33

Ent er account nunber

?0

Writing Data Randomly to a Randomly
Accessed File

Memory

cfPtr

?

\

Byte i (File posifion

number | 5 &Ter}

Fig. 11.14 The file position pointerindicating an offset of & bytes from the beginning
of the file.

Reading Data Randomly from a Randomly
Accessed File

- fread

- Reads a specified number of bytes from a file into memory

fread(&client, sizeof (struct clientData), 1, myPtr);
- Can read several fixed-size array elements

- Provide pointer to array

- Indicate number of elements to read

- To read multiple elements, specify in third argument

/* Fig. 11.15: figll_15.c
Reading a random access file sequentially */
#include <stdio.h>

struct clientData {
int acctNum; /* account number */
char lastName[15]; /* account last name */

1

2

3

4

5 /* clientData structure definition */

6

7

8

9 char firstName[10]; /* account first name */

10 double balance; /* account balance */

11 }; /* end structure clientbata */

12

13 int mainQ)

14 {

15 FILE *cfPtr; /* credit.dat file pointer */

16

17 /* create clientData with no information */

18 struct clientbata client = { O, "", "", 0.0 };

19

20 /* fopen opens the file; exits if file cannot be opened */
21 if ((cfPtr = fopen("credit.dat", "rb")) == NULL) {
22 printf("File could not be opened.\n");

23 } /* end if */

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

else {
printf("%-6s%-16s%-11s%10s\n", "Acct", "Last Name",
"First Name", "Balance");
/* read all records from file (until eof) */
while (!feof(cfpPtr)) {
fread(&client, sizeof(struct clientbata), 1, cfPtr);
/* display record */
if (client.acctNum != 0) {
printf("%-6d%-16s%-11s%10.2f\n",
client.acctNum, client.lastName,
client.firstName, client.balance);
} /* end if */
} /* end while */
fclose(cfPtr);/* fclose closes the file*/
} /* end else */
Acct Last Nane
return 0; 29 Brown
£ Dunn
37 Bar ker
} /* end main */ 88 Smth
96 St one

Fi rst Nane
Nancy

St acey
Doug

Dave

Sam

Bal ance
-24.54
314. 33

0.00
258. 34
34. 98

