
SEQUENTIAL STRUCTURE

Erkut ERDEM

Hacettepe University

October 2010

History of C
• C

• Developed by by Denis M. Ritchie at AT&T Bell Labs
from two previous programming languages, BCPL
and B

• Used to develop UNIX

• Used to write modern operating systems

• Hardware independent (portable)

• Standardization
• Many slight variations of C existed, and were

incompatible

• Committee formed to create a "unambiguous,
machine-independent" definition

• Standard created in 1989, updated in 1999

The C Standard Library

• C programs consist of pieces/modules called

functions

• A programmer can create his own functions

• Advantage: the programmer knows exactly how it works

• Disadvantage: time consuming

• Programmers will often use the C library functions

• Use these as building blocks

• Avoid re-inventing the wheel

• If a pre-made function exists, generally best to use it rather

than write your own

• Library functions carefully written, efficient, and portable

Basics of a Typical C Program Development

Environment
• Phases of C

Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Preprocessor program

processes the code.

Loader puts program

in memory.

CPU takes each

instruction and

executes it, possibly

storing new data

values as the program

executes.

Compiler creates object

code and stores it on

disk.

Linker links the object

code with the libraries

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

Program is created in

the editor and stored

on disk.

General Form of a C Program

Preprocessor directives

Declarations – variables (değişkenler)

(bildirimler) functions (işlevler)

main function {

 declarations

 statements

}

A Simple C Program

 /* Hello world! Example */

#include <stdio.h>

 int main(void)

 {

 printf(“Hello world!\n”);

 return 0;

 }

Hello world!

A Simple C Program (Cont.)

• Comment Line

(açıklama satırı)

• Text surrounded by /* and */

is ignored by computer

• Used to describe program

• #include <stdio.h>

• Preprocessor directive (ön işleyici komutu)

• Tells computer to load contents of a certain file

• <stdio.h> allows standard input/output operations

 Standart başlık kütüğü (header file)

/* Hello world! Example */

#include <stdio.h>

int main(void)

{

 printf(“Hello world!\n”);

 return 0;

}

A Simple C Program (Cont.)

• int main(void)

• C programs contain one or more

functions, exactly one of which
must be main

• Parenthesis used to indicate

a function

• int means that main "returns" an integer value

• void indicates that the function takes no arguments

• Braces ({ and }) indicate a block

• The bodies of all functions must be contained in braces

/* Hello World! Example */

#include <stdio.h>

int main(void)

{

 printf(“Hello world!\n”);

 return 0;

}

A Simple C Program (Cont.)

• printf("Hello world!\n");

• Instructs computer to perform

an action
• Specifically, prints the string of characters

within quotes (” ”)

• Entire line called a statement
• All statements must end with a semicolon (;)

• Escape character (\)

• Indicates that printf should do something out of the ordinary

• \n is the newline character

/* Hello World! Example */

#include <stdio.h>

int main(void)

{

 printf(“Hello world!\n”);

 return 0;

}

A Simple C Program (Cont.)

• return 0;

• A way to exit a function

• return 0, in this case, means that

the program terminated normally

• Right brace }

• Indicates end of main has been reached

/* Hello World! Example */

#include <stdio.h>

int main(void)

{

 printf(“Hello world!\n”);

 return 0;

}

Lexical Elements

• Token: the smallest element of a program that is

meaningful to the compiler

• Kinds of tokens in C:

• Keywords (Anahtar Kelimeler)

• Identifiers (Tanımlayıcılar)

• Constants/Literals (Sabitler)

• Operators (İşleçler)

• Punctuators (Noktalama İşaretleri)

Keywords

• 32 words defined as keywords in C

• have predefined uses and cannot be used for any other

purpose in a C program

auto double int struct

break else long switch

case enum register typedef

char extern return union

Const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers (Tanımlayıcılar)

• A sequence of letters, digits, and the special character ‘_’

satisfying:

 identifier = α {α + #}*

 with α = {A,…,Z,a,…,z,_ }, #={0,…,9}, and

 * means “0 or more”

• Case-sensitive
e.g. Ali and ali are two different identifiers.

• Identifiers are used for:

• Variable names (değişken isimleri)

• Function names (işlev isimleri)

• Macro names (makro isimleri)

Identifiers (Cont.)

• Sample valid identifiers
 x

 a1

 _xyz_33

 integer1

 Double

• Sample invalid identifiers

 xyz.1

 gx^2

 114West

 int

 pi*r*r

Variable Declarations

• Variables: locations in memory where a value is stored

• Variable declarations must appear before executable

statements.

• Variables must be declared before use.

• a syntax (compile-time) error if these are violated

• Every variable has a name, a type, a size and a value

Basic Datatypes in C

• Integer int

• Character char

• Floating Point float

• Double precision double

floating point

• Datatype modifiers

• signed / unsigned (for int and char)

• short / long

Basic Datatypes in C (Cont.)

• Type Typical Range of Values

 signed char (8 bits) -127 to +127

 unsigned char 0 to 255

 short int (16 bits) -32,767 to +32,767

 unsigned short int 0 to 65,535

 int (32 bits) -2,147,483,647 to +2,147,483,64

 unsigned int 0 to 4,294,967,295

 long int (32-64 bits) -2,147,483,647 to +2,147,483,647

 unsigned long int 0 to 4,294,967,295

 float ~10-37 to ~1038

 double ~10-307 to ~10308

 long double ~10-4931 to ~104932

Variable Declarations (Cont.)

• A declaration consists of a data type name followed by a list of (one or
more) variables of that type:

char c;

int ali, bora;

float rate;

double trouble;

• A variable may be initialized in its declaration.
char c = ‘a’;

int a = 220, b = 448;

float x = 1.23e-6; /*0.00000123*/

double y = 27e3; /*27,000*/

• Variables that are not initialized may have garbage values.

• Whenever a new value is placed into a variable, it replaces the previous

value

• Reading variables from memory does not change them

Constants

C manipulates various kinds of values.

• integer constants: 0, 37, 2001

• floating-point constants: 0.8, 199.33, 1.0

• character constants: ‘a’, ‘5’, ‘+’

• string constants: “a”, “Monday”

Common Escape Sequences

• \a audible alarm \b backspace

• \n newline \r carriage return

• \t horizontal tab \f form-feed

• \\ backslash \” double quote

Operators

• Arithmetic operators

• Assignment operator

• Logical operators (later on; in the lecture on

selective structure)

Arithmetic Operators

• For arithmetic calculations

• Use + for addition, - for substraction, * for multiplication and / for

division

• Integer division truncates remainder

• 7 / 5 evaluates to 1

• Modulus operator(%) returns the remainder

• 7 % 5 evaluates to 2

• Arithmetic operators associate left to right.

• Operator precedence

• Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

Arithmetic Operators (Cont.)

C operation

Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expression in the innermost pair is

evaluated first. If there are several pairs of parentheses “on the same level” (i.e., not

nested), they are evaluated left to right.

*, /, or % Multiplication,Division,

Modulus
Evaluated second. If there are several, they are

evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

Arithmetic Operators (Cont.)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

Step 2. y = 10 * 5 + 3 * 5 + 7;

Step 3. y = 50 + 3 * 5 + 7;

Step 4. y = 50 + 15 + 7;

Step 5. y = 65 + 7;

Step 6. y = 72;

 2 * 5 is 10

 10 * 5 is 50

 3 * 5 is 15

 50 + 15 is 65

 65 + 7 is 72

(Leftm ost mult ip licat ion)

(Leftm ost mult ip licat ion)

(Mult ip licat ion before ad dition)

(Leftm ost ad dit ion)

(Last a dd it ion)

(Last op era t io n—p la ce
72

 in
y

)

Assignment Operator

• int x,y; /* variable declarations */

• variable = expression ;

• expressions:

• operations

• variables

• constants

• function calls

• Precedence of the assignment operator is lower than the arithmetic

operators

int x

int y

x = 5*y + (y-1)*44 ;

expression

statement

l-value vs. r-value

 5 x

10 y

y = x ;

x = 5;

y = 10;

l-value

usage of y

r-value

usage of x

There is a memory

location named y.

This location will

receive a value.

There is a memory location

named x, in there is a value

sitting, go and get me that

value.

l-value vs. r-value (Cont.)

• x+1 = 3; invalid l-value expression

• l-value usages MUST refer to a fixed position

in the MEMORY.

l-value

expressions

(r-value) x+1

all variable names

Addition of two numbers
/* This programs adds the two integers that it reads */

#include <stdio.h>

int main (void)

{

 int num1, num2; /* declarations */

 printf(“Enter first integer.\n”); /* prompt */

 scanf(“%d”, &num1); /* read an integer*/

 printf(“Enter second integer.\n”); /* prompt */

 scanf(“%d”, &num2); /* read an integer */

 num1 = num1 + num2; /* assignment of sum */

 printf(“Sum is %d.\n”, num1); /* print sum */

 return 0; /* program ended

} successfully */

Addition of two numbers – Sample Runs

Enter first integer.

45

Enter second integer.

72

Sum is 117.

Enter first integer.

30

Enter second integer.

12

Sum is 42.

Addition of two numbers - Analysis

• int num1, num2;

• Variable declarations

• int means these variables can hold integers

• scanf("%d", &num1);

• Obtains a value from the user

• scanf uses standard input (usually keyboard)

• This scanf statement has two arguments

• %d - indicates data should be a decimal integer

• & refers to the address to store the value

• &num1 - location in memory where the variable num1 is stored

• When executing the program the user responds to the scanf

statement by typing in a number, then pressing the enter (return)

key

Addition of two numbers - Analysis

• num1 = num1 + num2;

• performs the arithmetic operation and then assigns the resulting
value to the variable num1

• Printf("Sum is %d\n", num1);

• similar to scanf

• %d means decimal integer will be printed

• num1 specifies what integer will be printed

• Calculations can be performed inside printf

statements

printf("Sum is %d\n", num1+ num2);

Increment and Decrement Operators

• i = i + 1 ;

 can further be abbreviated

 ++ --

• i = i + 1 OR ++i

• ++(i-3) invalid

• ++(++i) invalid

= ± 1

pre-incrementation pre-decrementation

• Post-incrementation/decrementation exists!

• i=5;

j=(++i)*2;

 (i=i+1)*2

• i=5;

j=(i++)*2;

Increment and Decrement Operators

++ --

5

6

12

5

6

10

i

i

j

i

i

j

i=5;

j=2*i++ - i;

- ambiguous

- compiler-dependent

Increment and Decrement Operators

• /*** increment and decrement expressions ***/

#include <stdio.h>

int main(void)

{

 int a =0 , b = 0, c = 0;

 a = ++b + ++c;

 printf(“\n%d %d %d”, a,b,c);

 a = b++ + c++;

 printf(“\n%d %d %d”, a,b,c);

 a = ++b + c++;

 printf(“\n%d %d %d”, a,b,c);

 a = b-- + --c;

 printf(“\n%d %d %d”, a,b,c);

 return 0;

}

2 1 1

2 2 2

5 3 3

5 2 2

Compound Assignment Operator

• sum = sum + x ;

 can be abbreviated

• sum += x;

=

=

l-value
arithmetic

operator

Nested Assignments

• Multiple assignments in one statement.

• Assignment operators are right-associative.

• x = y = z = 0;

 x = (y = (z = 0));

• x -= y = z;

 x -= (y = z);

• x = y += z;

 x = (y += z);

Input and Output

• printf(format string, arg1, arg2, …);

• The format string is composed of zero or more directives:

• ordinary characters (not %), which are copied unchanged to the

output stream

• e.g. printf(“Hello World!\n”);

• conversion specifications, each of which results in fetching zero or

more subsequent arguments.

• %c: the argument is taken to be a single character

• %d: the argument is taken to be an integer

• %f: the argument is taken to be a floating point (float or double)

%s: the argument is taken to be a string

Input and Output

• Examples:

 int i = 2;

 printf(“%d \n”, i);

 printf(“%d \n”, 20*i);

 float c = 20;

 printf(“%f centigrade = %f %s\n”,

 c, 1.8*c+32,”Fahrenheit”);

Input and Output

• scanf (format string, arg1, arg2, …);

• The format string consists of a sequence of directives which describe

how to process the sequence of input characters.

• A directive is one of the following:

• A sequence of white-space characters

• An ordinary character (i.e., one other than white space or '%')

• A conversion specification, which commences with a '%' (percent)

character

• %c: a single character is expected in the input

• %d: an integer is expected in the input

• %f: a floating point is expected in the input

• ..

• Each argument must point to the variable where the results of input

are to be stored.

Input and Output

• Example:

 #include<stdio.h>

 int main(void)

 {

 float principal, rate, interest;

 int years;

 printf(“principal, rate, and years? “);

 scanf(“%f %f %d”, &principal, &rate, &years);

 rate /= 100;

 interest = principal * rate * years;

 printf(“interest = %f\n”, interest);

 return 0;

 }

Type Conversion and Casting

• In an operation, if operands are of mixed data types,

the compiler will convert one operand to agree with the

other using the following hierarchy structure:

 long double (highest) 

 double

 float  long

 int

char/short (lowest)

char

short
int long float double

long

double

Type Conversion and Casting (Cont.)

• implicit (automatic) type conversion

• done automatically by the compiler whenever data from

different types is intermixed.

• int i;

 double x = 17.7;

 i = x;

• float x;

 int i = 17;

 x = i;

i=17

x=17.0

Type Conversion and Casting (Cont.)

• Casting: explicit type conversion

 (type) any r-value

#include <stdio.h>

int main(void)

{

 int total_score, num_students;

 float average;

 printf("Enter sum of scores: ");

 scanf("%d",&total_score);

 printf("Enter number of students: ");

 scanf("%d",&num_students);

 average=total_score/num_students;

 printf("Average score (no type casting) is %.2f\n", average);

 average=(float)total_score/(float)num_students;

 printf("Average score (with type casting) is %.2f\n", average);

 return 0;

}

Enter sum of scores: 333

Enter number of students: 4

Average score (no type casting) is 83.00

Average score (with type casting) is 83.25

Simple Macros

• C provides a #define directive to define symbolic

names for constants:

• #include<stdio.h>

 #define PI 3.14

 int main(void)

 {

 float radius;

 scanf(“%f”, &radius);

 printf(“area = %f\n”, PI * radius * radius);

 printf(“circumference = %f\n”, 2 * PI * radius);

 return 0;

 }

Exercises

• Given
 int x=4, y=5, z=6;

 Evaluate the following:
• x -= y = z;

• y *= z/x;

• z += -++x - y++;

• Given
 int a=12, b=8, c=2;

 Evaluate the following:

 b %= (a %= b) * c * c-b;

Exercises

• Given

 int x=3;

 What is the result of the following?

 x = x*5/2.0 + 3/2;

• Given

 double x = 3;

 What is the value of x after the following statements are executed?

• x = x*5/2;

• x = x*5/(int)2;

• x = (int)x*5/2;

Exercises

• Write a program that reads 3-digit 2 positive integer

number. Firstly, you will find the sum of individual digits of

the first number. After that, you will find the multiplication

of individual digits of the second number. Finally, you will

sum of these two results as an output.

 For example:

 inputs: 157 218

 157  1+5+7=13

 218  2*1*8=16

 output: 13+16=29

