
SEQUENTIAL STRUCTURE

Erkut ERDEM
Hacettepe University

October 2010

History of C
• C

• Developed by by Denis M. Ritchie at AT&T Bell Labs
from two previous programming languages, BCPL
and B

• Used to develop UNIX
• Used to write modern operating systems• Used to write modern operating systems
• Hardware independent (portable)

• Standardization
• Many slight variations of C existed, and were

incompatible
• Committee formed to create a "unambiguous,

machine-independent" definition
• Standard created in 1989, updated in 1999

The C Standard Library

• C programs consist of pieces/modules called
functions
• A programmer can create his own functions

• Advantage: the programmer knows exactly how it works

• Disadvantage: time consuming• Disadvantage: time consuming

• Programmers will often use the C library functions
• Use these as building blocks

• Avoid re-inventing the wheel
• If a pre-made function exists, generally best to use it rather

than write your own

• Library functions carefully written, efficient, and portable

Basics of a Typical C Program Development
Environment

• Phases of C
Programs:

1. Edit

2. Preprocess

3. Compile

Preprocessor program
processes the code.

Compiler creates object
code and stores it on
disk.

Linker links the object
code with the libraries

Compiler

Editor

Preprocessor

Linker

Disk

Disk

Disk

Disk

Program is created in
the editor and stored
on disk.

3. Compile

4. Link

5. Load

6. Execute

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

code with the libraries

Loader

Primary Memory

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

CPU

General Form of a C Program

Preprocessor directives

Declarations – variables (değişkenler)
(bildirimler) functions (işlevler)(bildirimler) functions (işlevler)

main function {
declarations

statements

}

A Simple C Program

/* Hello world! Example */
#include <stdio.h>

int main(void)

{

printf(“Hello world!\n”);

return 0;

}

Hello world!

A Simple C Program (Cont.)

• Comment Line
(açıklama satırı)
• Text surrounded by /* and */

is ignored by computer

• Used to describe program

/* Hello world! Example */
#include <stdio.h>

int main(void)
{

printf(“Hello world!\n”);
return 0;

}
• Used to describe program

• #include <stdio.h>

• Preprocessor directive (ön işleyici komutu)

• Tells computer to load contents of a certain file

• <stdio.h> allows standard input/output operations

Standart başlık kütüğü (header file)

A Simple C Program (Cont.)

• int main(void)

• C programs contain one or more
functions, exactly one of which
must be main

• Parenthesis used to indicate

/* Hello World! Example */
#include <stdio.h>

int main(void)
{

printf(“Hello world!\n”);
return 0;

}
• Parenthesis used to indicate

a function

• int means that main "returns" an integer value

• void indicates that the function takes no arguments

• Braces ({ and }) indicate a block
• The bodies of all functions must be contained in braces

A Simple C Program (Cont.)

• printf("Hello world!\n");

• Instructs computer to perform
an action
• Specifically, prints the string of characters

within quotes (” ”)

/* Hello World! Example */
#include <stdio.h>

int main(void)
{

printf(“Hello world!\n”);
return 0;

}

• Entire line called a statement
• All statements must end with a semicolon (;)

• Escape character (\)
• Indicates that printf should do something out of the ordinary

• \n is the newline character

A Simple C Program (Cont.)

• return 0;
• A way to exit a function

• return 0, in this case, means that
the program terminated normally

• Right brace }

/* Hello World! Example */
#include <stdio.h>

int main(void)
{

printf(“Hello world!\n”);
return 0;

}

• Right brace }
• Indicates end of main has been reached

Lexical Elements

• Token: the smallest element of a program that is
meaningful to the compiler

• Kinds of tokens in C: • Kinds of tokens in C:
• Keywords (Anahtar Kelimeler)

• Identifiers (Tanımlayıcılar)

• Constants/Literals (Sabitler)

• Operators (İşleçler)

• Punctuators (Noktalama İşaretleri)

Keywords

• 32 words defined as keywords in C

• have predefined uses and cannot be used for any other
purpose in a C program

auto double int struct

break else long switchbreak else long switch

case enum register typedef

char extern return union

Const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers (Tanımlayıcılar)

• A sequence of letters, digits, and the special character ‘_’
satisfying:

identifier = α {α + #}*

with α = {A,S,Z,a,S,z,_ }, #={0,S,9}, and
* means “0 or more”* means “0 or more”

• Case-sensitive
e.g. Ali and ali are two different identifiers.

• Identifiers are used for:
• Variable names (değişken isimleri)

• Function names (işlev isimleri)

• Macro names (makro isimleri)

Identifiers (Cont.)

• Sample valid identifiers
x

a1

_xyz_33

integer1integer1

Double

• Sample invalid identifiers
xyz.1

gx^2

114West

int

pi*r*r

Variable Declarations

• Variables: locations in memory where a value is stored

• Variable declarations must appear before executable
statements.

• Variables must be declared before use.Variables must be declared before use.

• a syntax (compile-time) error if these are violated

• Every variable has a name, a type, a size and a value

Basic Datatypes in C

• Integer int

• Character char

• Floating Point float

• Double precision double

floating pointfloating point

• Datatype modifiers
• signed / unsigned (for int and char)

• short / long

Basic Datatypes in C (Cont.)
• Type Typical Range of Values

signed char (8 bits) -127 to +127

unsigned char 0 to 255

short int (16 bits) -32,767 to +32,767

unsigned short int 0 to 65,535

int (32 bits) -2,147,483,647 to +2,147,483,64

unsigned int 0 to 4,294,967,295

long int (32-64 bits) -2,147,483,647 to +2,147,483,647

unsigned long int 0 to 4,294,967,295

float ~10-37 to ~1038

double ~10-307 to ~10308

long double ~10-4931 to ~104932

Variable Declarations (Cont.)
• A declaration consists of a data type name followed by a list of (one or

more) variables of that type:
char c;

int ali, bora;

float rate;

double trouble;

• A variable may be initialized in its declaration.
char c = ‘a’;

int a = 220, b = 448;

float x = 1.23e-6; /*0.00000123*/

double y = 27e3; /*27,000*/

• Variables that are not initialized may have garbage values.

• Whenever a new value is placed into a variable, it replaces the previous
value

• Reading variables from memory does not change them

Constants

C manipulates various kinds of values.

• integer constants: 0, 37, 2001

• floating-point constants: 0.8, 199.33, 1.0

• character constants: ‘a’, ‘5’, ‘+’

string constants: • string constants: “a”, “Monday”

Common Escape Sequences

• \a audible alarm \b backspace

• \n newline \r carriage return

• \t horizontal tab \f form-feed

• \\ backslash \” double quote

Operators

• Arithmetic operators

• Assignment operator

• Logical operators (later on; in the lecture on
selective structure)selective structure)

Arithmetic Operators

• For arithmetic calculations
• Use + for addition, - for substraction, * for multiplication and / for

division

• Integer division truncates remainder
• 7 / 5 evaluates to 1

• Modulus operator(%) returns the remainder
• 7 % 5 evaluates to 2

• Arithmetic operators associate left to right.

• Operator precedence
• Example: Find the average of three variables a, b and c

• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

Arithmetic Operators (Cont.)

C operation

Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

()()()() Parentheses Evaluated first. If the parentheses are nested, the expression in the innermost pair is

evaluated first. If there are several pairs of parentheses “on the same level” (i.e., not

nested), they are evaluated left to right.

****, ////, or %%%% Multiplication,Division,

Modulus
Evaluated second. If there are several, they are

evaluated left to right.

++++ or ---- Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

Arithmetic Operators (Cont.)
Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

Step 2. y = 10 * 5 + 3 * 5 + 7;

 2 * 5 is 10

 10 * 5 is 50

(Leftm ost mult ip licat ion)

(Leftm ost mult ip licat ion)

Step 3. y = 50 + 3 * 5 + 7;

Step 4. y = 50 + 15 + 7;

Step 5. y = 65 + 7;

Step 6. y = 72;

 3 * 5 is 15

 50 + 15 is 65

 65 + 7 is 72

(Mult ip licat ion before ad dition)

(Leftm ost ad dit ion)

(Last a dd it ion)

(Last op era t io n—p la ce 72 in y)

Assignment Operator

• int x,y; /* variable declarations */

• variable = expression ;

int x

int y

• variable = expression ;

• expressions:
• operations

• variables

• constants

• function calls

• Precedence of the assignment operator is lower than the arithmetic
operators

x = 5*y + (y-1)*44 ;

expression

statement

l-value vs. r-value
5 x

10 y

x = 5;
y = 10;

l-value
usage of y

r-value
usage of x

y = x ;

There is a memory
location named y.
This location will
receive a value.

There is a memory location
named x, in there is a value
sitting, go and get me that
value.

l-value vs. r-value (Cont.)

• x+1 = 3; invalid l-value expression

expressions
(r-value) x+1

• l-value usages MUST refer to a fixed position
in the MEMORY.

l-value
all variable names

Addition of two numbers
/* This programs adds the two integers that it reads */

#include <stdio.h>

int main (void)

{

int num1, num2; /* declarations */

printf(“Enter first integer.\n”); /* prompt */printf(“Enter first integer.\n”); /* prompt */

scanf(“%d”, &num1); /* read an integer*/

printf(“Enter second integer.\n”); /* prompt */

scanf(“%d”, &num2); /* read an integer */

num1 = num1 + num2; /* assignment of sum */

printf(“Sum is %d.\n”, num1); /* print sum */

return 0; /* program ended

} successfully */

Addition of two numbers – Sample Runs

Enter first integer.

45

Enter second integer.

72

Sum is 117.Sum is 117.

Enter first integer.

30

Enter second integer.

12

Sum is 42.

Addition of two numbers - Analysis

• int num1, num2;

• Variable declarations

• int means these variables can hold integers

• scanf("%d", &num1);

• Obtains a value from the user• Obtains a value from the user
• scanf uses standard input (usually keyboard)

• This scanf statement has two arguments
• %d - indicates data should be a decimal integer

• & refers to the address to store the value

• &num1 - location in memory where the variable num1 is stored

• When executing the program the user responds to the scanf
statement by typing in a number, then pressing the enter (return)
key

Addition of two numbers - Analysis
• num1 = num1 + num2;

• performs the arithmetic operation and then assigns the resulting
value to the variable num1

• Printf("Sum is %d\n", num1);Printf("Sum is %d\n", num1);

• similar to scanf
• %d means decimal integer will be printed

• num1 specifies what integer will be printed

• Calculations can be performed inside printf
statements
printf("Sum is %d\n", num1+ num2);

Increment and Decrement Operators

• i = i + 1 ;

can further be abbreviated

= ± 1

can further be abbreviated

++ --

• i = i + 1 OR ++i

• ++(i-3) invalid

• ++(++i) invalid

pre-incrementation pre-decrementation

• Post-incrementation/decrementation exists!

• i=5;

Increment and Decrement Operators

++ --

5 i i=5;• i=5;
j=(++i)*2;

(i=i+1)*2

• i=5;
j=(i++)*2;

5

6

12

5

6

10

i

i

j

i

i

j

i=5;
j=2*i++ - i;

- ambiguous
- compiler-dependent

Increment and Decrement Operators
• /*** increment and decrement expressions ***/

#include <stdio.h>

int main(void)

{

int a =0 , b = 0, c = 0;

a = ++b + ++c;

printf(“\n%d %d %d”, a,b,c);

a = b++ + c++;

printf(“\n%d %d %d”, a,b,c);

a = ++b + c++;

printf(“\n%d %d %d”, a,b,c);

a = b-- + --c;

printf(“\n%d %d %d”, a,b,c);

return 0;

}

2 1 1

2 2 2

5 3 3

5 2 2

Compound Assignment Operator

• sum = sum + x ;

=

l-value
arithmetic
operator

can be abbreviated

• sum += x;

=

Nested Assignments

• Multiple assignments in one statement.

• Assignment operators are right-associative.

• x = y = z = 0;

x = (y = (z = 0));x = (y = (z = 0));

• x -= y = z;

x -= (y = z);

• x = y += z;

x = (y += z);

Input and Output

• printf(format string, arg1, arg2, S);

• The format string is composed of zero or more directives:
• ordinary characters (not %), which are copied unchanged to the

output streamoutput stream

• e.g. printf(“Hello World!\n”);

• conversion specifications, each of which results in fetching zero or
more subsequent arguments.
• %c: the argument is taken to be a single character

• %d: the argument is taken to be an integer

• %f: the argument is taken to be a floating point (float or double)
%s: the argument is taken to be a string

Input and Output

• Examples:

int i = 2;

printf(“%d \n”, i);

printf(“%d \n”, 20*i);

float c = 20;

printf(“%f centigrade = %f %s\n”,

c, 1.8*c+32,”Fahrenheit”);

Input and Output
• scanf (format string, arg1, arg2, S);

• The format string consists of a sequence of directives which describe
how to process the sequence of input characters.

• A directive is one of the following:
• A sequence of white-space characters • A sequence of white-space characters

• An ordinary character (i.e., one other than white space or '%')

• A conversion specification, which commences with a '%' (percent)
character
• %c: a single character is expected in the input

• %d: an integer is expected in the input

• %f: a floating point is expected in the input

• ..

• Each argument must point to the variable where the results of input
are to be stored.

Input and Output
• Example:

#include<stdio.h>

int main(void)

{

float principal, rate, interest;

int years;int years;

printf(“principal, rate, and years? “);

scanf(“%f %f %d”, &principal, &rate, &years);

rate /= 100;

interest = principal * rate * years;

printf(“interest = %f\n”, interest);

return 0;

}

Type Conversion and Casting

• In an operation, if operands are of mixed data types,
the compiler will convert one operand to agree with the
other using the following hierarchy structure:

long double (highest) 

doubledouble

float  long

int

char/short (lowest)

char

short
int long float double

long

double

Type Conversion and Casting (Cont.)

• implicit (automatic) type conversion
• done automatically by the compiler whenever data from

different types is intermixed.

• int i;• int i;

double x = 17.7;

i = x;

• float x;

int i = 17;

x = i;

i=17

x=17.0

Type Conversion and Casting (Cont.)

• Casting: explicit type conversion

(type) any r-value
#include <stdio.h>

int main(void)

{

Enter sum of scores: 333
Enter number of students: 4
Average score (no type casting) is 83.00{

int total_score, num_students;

float average;

printf("Enter sum of scores: ");

scanf("%d",&total_score);

printf("Enter number of students: ");

scanf("%d",&num_students);

average=total_score/num_students;

printf("Average score (no type casting) is %.2f\n", average);

average=(float)total_score/(float)num_students;

printf("Average score (with type casting) is %.2f\n", average);

return 0;

}

Average score (no type casting) is 83.00
Average score (with type casting) is 83.25

Simple Macros

• C provides a #define directive to define symbolic
names for constants:

• #include<stdio.h>

#define PI 3.14#define PI 3.14

int main(void)

{

float radius;

scanf(“%f”, &radius);

printf(“area = %f\n”, PI * radius * radius);

printf(“circumference = %f\n”, 2 * PI * radius);

return 0;

}

Exercises

• Given
int x=4, y=5, z=6;

Evaluate the following:
• x -= y = z;

• y *= z/x;• y *= z/x;

• z += -++x - y++;

• Given
int a=12, b=8, c=2;

Evaluate the following:
b %= (a %= b) * c * c-b;

Exercises
• Given

int x=3;

What is the result of the following?

x = x*5/2.0 + 3/2;

• Given

double x = 3;

What is the value of x after the following statements are executed?

• x = x*5/2;

• x = x*5/(int)2;

• x = (int)x*5/2;

Exercises

• Write a program that reads 3-digit 2 positive integer
number. Firstly, you will find the sum of individual digits of
the first number. After that, you will find the multiplication
of individual digits of the second number. Finally, you will
sum of these two results as an output.sum of these two results as an output.

For example:

inputs: 157 218

157 � 1+5+7=13

218 � 2*1*8=16

output: 13+16=29

