
CHARACTER PROCESSING
AND STRINGS

The Data Type char
• Each character is stored in a machine in
one byte (8 bits)
• 1 byte is capable of storing 28 or 256 distinct
values.values.

• When a character is stored in a byte, the
contents of that byte can be thought of as
either a character or as an integer.

The Data Type char
• A character constant is written between
single quotes.

‘a’
‘b’

• A declaration for a variable of type char
is

char c;

• Character variables can be initialized
char c1=‘A’, c2=‘B’, c3=‘*’;

lowercase ‘a’ ‘b’ ‘c’ ... ‘z’
ASCII value 97 98 99 ... 122

uppercase ‘A’ ‘B’ ‘C’ ... ‘Z’
ASCII value 65 66 67 90

In C, a character is considered to have the integer value
corresponding to its ASCII encoding.

digit ‘0’ ‘1’ ‘2’ ... ‘9’
ASCII value 48 49 50 ... 57

other ‘&’ ‘*’ ‘+’ ...
ASCII value 38 42 43

Characters and Integers

• There is no relationship between the character ‘2’ (which
has the ASCII value 50) and the constant number 2.

• ‘2’ is not 2.
• ‘A’ to ‘Z’ 65 to 90
• ‘a’ to ‘z’ 97 to 112• ‘a’ to ‘z’ 97 to 112
• Examples:

• printf(“%c”,’a’);
• printf(“%c”,97); have similar output.
• Printf(“%d”,’a’);
• printf(“%d”,97); have also similar output.

The Data Type char

• Some nonprinting and hard-to-print characters
require an escape sequence.

• For example, the newline character is written as \n
and it represents a single ASCII character.

Name of character Written in C Integer Value

alert \a 7
backslash \\ 92
double quote \” 34
horizontal tab \t 9

Input and Output of Characters

• getchar () reads a character from the keyboard.
c = getchar(); /* variable c contains the

next character of input */

putchar ():• putchar (): prints a character to the screen.
putchar(c); /* prints the contents of the

variable c as a character */

/* Illustrating the use of getchar() and putchar() */

#include <stdio.h>
int main (void)
{

char c;
while ((c=getchar()) != EOF) {

putchar(c);
putchar(c);

} abcdef}
}

EOF : It is control-d in Unix; control-z in DOS.

abcdef
aabbccddeeff

/* Capitalize lowercase letters and
* double space */

int main(void)
{ int c;

while ((c=getchar()) != EOF){
if ('a' <= c && c <= 'z')

putchar(c+'A'-'a'); /*convert to
uppercase*/

cop3223!c C

uppercase*/
else if (c == '\n'){

putchar ('\n');
putchar ('\n');

}
else putchar (c);

}
}

Character Functions
Function Nonzero (true) is returned if
isalpha(c) c is a letter
isupper(c) c is an uppercase letter
islower(c) c is a lowercase letter
isdigit(c) c is a digit
isalnum(c) c is a letter or digit
isspace(c) c is a white space character

Function Effect_____________
toupper(c) changes c to uppercase
tolower(c) changes c to lowercase
toascii(c) changes c to ASCII code

/* Capitalize lowercase letters and double space */
#include <stdio.h>
#include<ctype.h>

int main(void)
{ int c;

while ((c=getchar()) != EOF){
if (islower(c))

putchar(toupper(c)); /*convert to uppercase */
else if (c == ‘ \ n’){ else if (c == ‘ \ n’){

putchar (‘\n’);
putchar (‘\n’);

}
else putchar (c);

}
}

STRINGS

Fundamentals of Strings and
Characters

• Characters
• Building blocks of programs

• Every program is a sequence of meaningfully grouped characters
• Character constant

• An int value represented as a character in single quotes
• 'z' represents the integer value of z• 'z' represents the integer value of z

• Strings
• Series of characters treated as a single unit

• Can include letters, digits and special characters (* , / , $)

• String literal (string constant) - written in double quotes
• "Hello"

• Strings are arrays of characters in C
• String is a pointer to first character
• Value of string is the address of first character

Strings
• A string constant such as “a string” is an array of

characters.
• Each element of the array stores a character of the string.
• In its internal representation, the array is terminated with

the null character ‘\0’ so that the end of the string can be the null character ‘\0’ so that the end of the string can be
found easily.

• Thus, the length of the array is defined one more than the
number of characters between the double quotes.

Declaring Strings
char myString[10];

myString[0] = ‘H’;

myString[1] = ‘e’;

myString[2] = ‘l’;myString[2] = ‘l’;

myString[3] = ‘l’;

myString[4] = ‘o’;

myString[5] = ‘\0’;

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’ ? ? ? ?

0 1 2 3 4 5 6 7 8 9

Initializing Strings
• Character arrays can be initialized when they are

declared :

char name[5] ={‘M’,’E’, ‘T’,’U’,’\0’};

char name[5] = “METU”; /*compiler char name[5] = “METU”; /*compiler

automatically adds ‘\0’ */

char name[] = “METU”; /*compiler calculates

the size of the array */

Strings and Pointers
• We can declare and initialize a string as a variable of type

char *

char *color = “blue”;
• But the interpretation is different. “blue” is stored in memory

as a string constant. The variable color is assigned the
address of the constant string in memory.address of the constant string in memory.

• If we declare it as:
char c[] = “blue”;

the array c contains the individual characters followed by
the null character.

Inputting Strings
• Using subscripts:

char c, name[20];

int i;

for (i = 0; (c = getchar())!=‘\n’; i ++)

name[i] = c;

name[i]=‘ \ 0’;name[i]=‘ \ 0’;

• Using scanf and %s format:
scanf(“%s”, name);

• no need to use & operator
• it will skip the leading blanks in the input, then characters will be

read in. The process stops when a white space or EOF is
encountered.

• Remember to leave room in the array for '\0'

Printing Strings
• Using %s format:
printf(“%s %s\n”, “Nice to meet you”, name);

• Using subscripts: e.g. printing name backwards
for (-- i; i>=0; -- i)for (-- i; i>=0; -- i)

putchar(name[i]);

putchar(‘\n’);

Examples
• printf("***Name:%8s*Lastname:%3s*** \n",“John",

“Smith");

• Output:
Name: John*Lastname:Smith

printf("***% - 10s*** \ n", “John");• printf("***% - 10s*** \ n", “John");

• Output
***John ***

• scanf("%d%s%d%s", &day,month,&year,day_name);

• Example input:
5 November 2001 Monday

String Handling Functions (string.h)
• String handling library has functions to

• Manipulate string data
• Search strings
• Tokenize strings
• Determine string length

Function prototype Function description

char *strcpy(char *s1, Copies string s2 into array s1 . The value of char *strcpy(char *s1,
 char *s2)

Copies string s2 into array s1 . The value of
s1 is returned.

char *strncpy(char *s1,
 char *s2, int n)

Copies at most n characters of string s2 into
array s1 . The value of s1 is returned.

char *strcat(char *s1,
 char *s2)

Appends string s2 to array s1 . The first
character of s2 overwrites the terminating null
character of s1 . The value of s1 is returned.

char *strncat(char *s1,
 char *s2, int n)

Appends at most n characters of string s2 to
array s1 . The first character of s2 overwrites
the terminating null character of s1 . The value
of s1 is returned.

String Handling Functions (cont.)
• unsigned strlen(char *s);

• A count of the number of characters before \0 is returned.

• int strcmp(char *s1, char *s2);

• Compares string s1 to s2

• Returns a negative number if s1 < s2 , zero if s1 == s2 or a
positive number if s1 > s2positive number if s1 > s2

• int strncmp(char *s1, char *s2, int n);

• Compares up to n characters of string s1 to s2

• Returns values as above

strcpy() and strncpy()
• We cannot change the contents of a string by an assignment

statement.
char str[10];

str = “test”; /*Error! Attempt to change the base

address*/

• Thus, we need to use string copy functions• Thus, we need to use string copy functions
• strcpy(str, “test”); /*contents of str changed*/

• strncpy(str, “testing”, 5);

str[5] =‘\0’; /* str contains “testi” only */

• strcpy(str, “a very long string"); /*overflow of

array boundary */

strcat() and strncat()

char s[8]=“abcd”;

strcat(s,”FGH”); // s keeps abcdFGH

char t[10]=“abcdef”;

strcat(t,”GHIJKLM”); //exceeds string length!

strncat(t, "GHIJKLM",3);

t[9] = '\0'; // t keeps abcdefGHI

strcmp() and strncmp()
• We can compare characters with <,>,<= etc.

e.g. ‘A’ < ‘B’

• But we cannot compare strings with the relational operators.
e.g. str1 < str2 will compare the memory addresses pointed by

str1 and str2 .

• Therefore we need to use string comparison functions.
strcmp("abcd", "abcde") ->returns a negative number

strcmp("xyz", "xyz") -> returns zero

strcmp("xyz", "abc") -> positive number

strncmp("abcde", "abcDEF", 3) -> zero

strncmp("abcde", "abcDEF", 4) -> positive number

Examples
char s1[] = “beautiful big sky country”;

char s2[] = “how now brown cow”;

Expression Value
strlen(s1) 25

strlen(s2+8) 9strlen(s2+8) 9

Statements What is printed
printf(“%s”, s1+10); big sky country

strcpy(s1+10, s2+8)

strcat(s1, “s!”);

printf(“%s”,s1); beautiful brown cows!

#include <stdio.h>

#include <string.h>

#define LENGTH 20

/* A string is a palindrome if it reads the same ba ckwards and
forwards. e.g. abba, mum, radar. This programs chec ks whether a
given string is palindrome or not.

int isPalindrome(char s[]); // function prototype

int main()

{

char str[LENGTH];char str[LENGTH];

// read the string

printf(“Enter a string ");

scanf("%s", str);

// Check if it is a palindrome.

if (isPalindrome(str))

printf("%s is a palindrome.\n", str);

else

printf("%s is not a palindrome.\n", str);

}

int isPalindrome(char str[])
{

int i, j, flag;

i = 0; // index of the first chara cter
j = strlen(str) - 1; // index of the last charac ter
flag = 1; //assume it is a palindrom e
while ((i<j) && flag){

// compare the ith and jth. characters
if (str [i] != str [j])if (str [i] != str [j])

flag = 0; // if not same then string cannot be a
//palindrome.

else {
i++;
j--;

} // advance to next characters
}
return flag;

}

#include <stdio.h>
#include <string.h>

#define LENGTH 20

// This program converts a positive integer to a bi nary
// number which is represented as a string. For ins tance
// decimal number 12 is 1100 in binary system.

void toBinary(int decVal, char *); //function proto type
int main()
{ {

int num;
char bin[LENGTH];

// read a positive integer
printf(“Enter a number: ");
scanf("%d",&num);

// Convert the number and print it.
toBinary(num, bin);
printf(“Binary equivalent of %d is : %s",num,

bin);
}

void toBinary(int decVal, char *sb) {

char s0[LENGTH], s1[LENGTH];

// create an empty string.
strcpy(sb,””);
if (decVal == 0)

strcat(sb,"0"); // if number is zero result is 0
else // otherwise convert it to bina ry

while (decVal != 0) {
strcpy (s0,"0");strcpy (s0,"0");
strcpy(s1,"1");
if (decVal%2 == 0)

strcpy(sb,strcat(s0,sb)); //last character is 0
else

strcpy(sb,strcat(s1,sb)); //last character is 1
decVal = decVal / 2; /* advance to find the next dig it */

}
return sb;

}

