
STRUCTURES

Sevil ŞEN

Hacettepe University
December 2010

Introduction

Structures

• Collections of related variables (aggregates) under one
name

• Can contain variables of different data types

• Commonly used to define records to be stored in files• Commonly used to define records to be stored in files

• Combined with pointers, can create linked lists, stacks,
queues, and trees

Structure Definitions
Example 1:

struct card {

char *face;

char *suit;
};

• struct introduces the definition for structure card
• card is the structure name and is used to declare variables of the

structure type
• card contains two members of type char *

• These members are face and suit

• A structure definition does not reserve space in memory
• Instead creates a new data type used to define structure variables

• Variables can be defined as below:
struct card {

char *face;

char *suit;

Structure Definitions

char *suit;

} oneCard, deck[52], *cPtr;

• Or defined like other variables:
struct card {

char *face;

char *suit;

};

struct card oneCard, deck[52], *cPtr;

Structure Definitions
Example 2:

struct point {
int x;
int y;

};

struct point pt; /* defines a variable pt which
is a structure of type
struct point */

pt.x = 15;
pt.y = 30;
printf(“%d, %d”, pt.x, pt.y);

Structure Definitions
/* Structures can be nested. One representation of
a rectangle is a pair of points that denote the
diagonally opposite corners. */

struct rect {
struct point pt1;
struct point pt2;

};};

struct rect screen;

/* Print the pt1 field of screen */
printf(“%d, %d”,screen.pt1.x,screen.pt1.y);

/* Print the pt2 field of screen */
printf(“%d, %d”,screen.pt2.x,screen.pt2.y);

Structure Definitions

Valid Operations
• Assigning a structure to a structure of the same type
• Taking the address (&) of a structure
• Accessing the members of a structure
• Using the sizeof operator to determine the size of a structure• Using the sizeof operator to determine the size of a structure

Initializing Structures
• Initializer lists

• Example:
card oneCard = { "Three", "Hearts" };

• Assignment statements
• Example:• Example:

card threeHearts = oneCard;

• Could also define and initialize threeHearts as follows:
card threeHearts;
threeHearts.face = “Three”;
threeHearts.suit = “Hearts”;

Accessing Members of Structures

• Accessing structure members
• Dot operator (.) used with structure variables

card myCard;

printf("%s", myCard.suit);

• Arrow operator (->) used with pointers to structure variables

card *myCardPtr = &myCard;

printf("%s", myCardPtr->suit);

• myCardPtr->suit is equivalent to
(*myCardPtr).suit

#include <stdio.h>

/* card structure definition */

struct card {

char *face; /* define pointer face */

char *suit; /* define pointer suit */

}; /* end structure card */

int main() {

struct card a; /* define struct a */

struct card *aPtr; /* define a pointer to card */

Program Output :

Ace of Spades
Ace of Spades
Ace of Spades

a.face = "Ace";

a.suit = "Spades";

aPtr = &a; /* assign address of a to aPtr */

printf("%s of %s\n", a.face, a.suit);

printf("%s of %s\n", aPtr->face, aPtr->suit);

printf("%s of %s\n", (*aPtr).face, (*aPtr).suit);

return 0; /* indicates successful termination */

} /* end main */

typedef
typedef

• Creates synonyms (aliases) for previously defined data types
• Use typedef to create shorter type names

Example:
typedef struct point pixel;typedef struct point pixel;

• Defines a new type name pixel as a synonym for type struct point

typedef struct Card *CardPtr;
• Defines a new type name CardPtr as a synonym for type struct Card *

• typedef does not create a new data type
• Only creates an alias

• Passing structures to functions
• Pass entire structure

• Or, pass individual members

• Both pass call by value

Using Structures With Functions

• To pass structures call-by-reference
• Pass its address
• Pass reference to it

• To pass arrays call-by-value
• Create a structure with the array as a member
• Pass the structure

#include<stdio.h> /* Demonstrates passing a structure to a
function */

struct data{
int amount;
char fname[30];
char lname[30];

}rec;

void printRecord(struct data x){

Using Structures with Functions 1

void printRecord(struct data x){

printf(“\nDonor %s %s gave $%d”, x.fname, x.lname, x.amount);
}

int main(void){
printf(“Enter the donor’s first and last names\n”);
printf(“separated by a space: ”);
scanf(“%s %s”,rec.fname, rec.lname);
printf(“Enter the donation amount: ”);
scanf(“%d”,&rec.amount);
printRecord(rec);
return 0;

}

/* Make a point from x and y components. */
struct point makepoint (int x, int y)
{

struct point temp;

temp.x = x;
temp.y = y;
return (temp);

}

Using Structures with Functions 2

}

/* makepoint can now be used to initialize a structure */
struct rect screen;
struct point middle;

screen.pt1 = makepoint(0,0);
screen.pt2 = makepoint(50,100);
middle = makepoint((screen.pt1.x + screen.pt2.x)/2,

(screen.pt1.y + screen.pt2.y)/2);

/* add two points */

struct point addpoint (struct point p1, struct point p2)
{

p1.x += p2.x;
p1.y += p2.y;
return p1;

}

Both arguments and the return value are structures in the
function addpoint.

Structures and Pointers
struct point *p; /* p is a pointer to a structure

of type struct point */

struct point origin;

p = &origin;

printf(“Origin is (%d, %d)\n”, (*p).x, (*p).y);printf(“Origin is (%d, %d)\n”, (*p).x, (*p).y);

• Parenthesis are necessary in (*p).x because the
precedence of the structure member operator (dot) is
higher than *.

• The expression *p.x ≡ *(p.x) which is illegal
because x is not a pointer.

Structures and Pointers

• Pointers to structures are so frequently used that an
alternative is provided as a shorthand.

• If p is a pointer to a structure, then

p -> field_of_structure

refers to a particular field.refers to a particular field.
• We could write

printf(“Origin is (%d %d)\n”, p->x, p->y);

struct student {
char *last_name;
int student_id;
char grade;

};
struct student temp, *p = &temp;

temp.grade = ‘A’;

Assignments

temp.grade = ‘A’;
temp.last_name = “Casanova”;
temp.student_id = 590017;

Expression Equiv. Expression Value
temp.grade p -> grade A
temp.last_name p -> last_name Casanova
temp.student_id p -> student_id 590017
(*p).student_id p -> student_id 590017

Structures and Pointers

• Both . and -> associate from left to right

• Consider
struct rect r, *rp = &r;

• The following 4 expressions are equivalent.
r.pt1.xr.pt1.x

rp -> pt1.x

(r.pt1).x

(rp->pt1).x struct rect {
struct point pt1;
struct point pt2;

};

Arrays of Structures
• Usually a program needs to work with more than one

instance of data.
• For example, to maintain a list of phone #s in a program,

you can define a structure to hold each person’s name
and number.and number.

struct entry {

char fname[10];

char lname[12];

char phone[8];

};

Arrays of Structures
• A phone list has to hold many entries, so a single instance

of the entry structure isn’t of much use. What we need is
an array of structures of type entry.

• After the structure has been defined, you can define the • After the structure has been defined, you can define the
array as follows:

struct entry list[1000];

struct entry list[1000]

list[0]

list[1]

list[0].fname

list[0].lname

list[0].phone

list[1].fname

list[1].lname

list[1].phone

list[999]

list[1].phone

list[999].fname

list[999].lname

list[999].phone

list[999].fname[2]

23

• To assign data in one element to another array element,
you write

list[1] = list[5];

• To move data between individual structure fields, you
write

strcpy(list[1].phone, list[5].phone);strcpy(list[1].phone, list[5].phone);

• To move data between individual elements of structure
field arrays, you write

list[5].phone[1] = list[2].phone[3];

#define CLASS_SIZE 100
struct student {

char *last_name;
int student_id;
char grade;

};

int main(void)
{

struct student temp,
class[CLASS_SIZE];

... /*Do some operation to fill class structure*/

printf (“Number of A’s in class: %d\n”, countA(class));
}

int countA(struct student class[])
{

int i, cnt = 0;
for (i = 0; i < CLASS_SIZE; ++i)

cnt += class[i].grade == ‘A’;
return cnt;

}

• Arrays of structures can be very powerful programming
tools, as can pointers to structures.

struct part {
int number;
char name [10];

};

struct part data[100];
struct part *p_part;struct part *p_part;

p_part = data;
printf(“%d %s”, p_part->number, p_part -> name);

100 101 102 103 104 105 106 107 108

x[0] x[1] x[2]

Memory addresses

ptr++ ptr++

100 103 106

26

• The above diagram shows an array named x that consists of 3
elements. The pointer ptr was initialized to point at x[0]. Each time ptr is
incremented, it points at the next array element.

/* Array of structures */
#include <stdio.h>
#define MAX 4

struct part {
int number;
char name[10];

};

struct part data[MAX]= {1, “Smith”, 2, “Jones”, 3, “Adams”, 4, “Will”};

int main (void)
{{

struct part *p_part;
int count;

p_part = data;
for (count = 0; count < MAX; count++) {

printf(“\n %d %s”, p_part -> number, p_part -> name);
p_part++;

}
return 0;

}

Unions
• union

• Memory that contains a variety of objects over time
• Only contains one data member at a time
• Members of a union share space

• Conserves storage
• Only the last data member defined can be accessed

• union definitions
• Same as struct

union Number {

int x;

float y;

};

union Number value;

Unions

• Valid union operations
• Assignment to union of same type: =
• Taking address: &
• Accessing union members: .
• Accessing members using pointers: ->• Accessing members using pointers: ->

/* number union definition */

union number {

int x; /* define int x */

double y; /* define double y */

}; /* end union number */

int main(){

union number value; /* define union value */

value.x = 100; /* put an integer into the union */

printf(“Put a value in the integer member.\n”);

printf(“ int: %d\n double:%f\n\n", value.x, value.y);

value.y = 100.0; /* put a double into the same union */

printf(“Put a value in the floating member.\n”);

printf(“ int: %d\n double:%f\n\n", value.x, value.y);

return 0; /* indicates successful termination */

} /* end main */

Put a value in the integer member.Put a value in the integer member.Put a value in the integer member.Put a value in the integer member.
intintintint: 100: 100: 100: 100
double:double:double:double:----
925595921174331360000000000000000000000000000000925595921174331360000000000000000000000000000000925595921174331360000000000000000000000000000000925595921174331360000000000000000000000000000000
00000000000000.00000000000000000000.00000000000000000000.00000000000000000000.000000

Put a value in the floating member.Put a value in the floating member.Put a value in the floating member.Put a value in the floating member.
intintintint: 0: 0: 0: 0
double: 100.000000 double: 100.000000 double: 100.000000 double: 100.000000 double: 100.000000 double: 100.000000 double: 100.000000 double: 100.000000

Enumeration Constants
• Enumeration

• Set of integer constants represented by identifiers
• Enumeration constants are like symbolic constants whose values

are automatically set
• Values start at 0 and are incremented by 1
• Values can be set explicitly with =

• Need unique constant names• Need unique constant names

• Example:
enum Months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,

SEP, OCT, NOV, DEC};

• Creates a new type enum Months in which the identifiers are set to the
integers 1 to 12

#include <stdio.h>

/* enumeration constants represent months of the year */

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

int main()

{

enum months month; /* can contain any of the 12 months */

const char *monthName[] = { "", "January", "February", "March",

"April", "May", "June", "July", "August", "September", "October","April", "May", "June", "July", "August", "September", "October",

"November", "December" };

for (month = JAN; month <= DEC; month++)

printf("%2d %11s\n", month, monthName[month]);

return 0; /* indicates successful termination */

} /* end main */

1 January
2 February
3 March
4 April
5 May
6 June
7 July
8 August
9 September9 September
10 October
11 November
12 December

DATA STRUCTURES:
LINKED LISTS

Introduction
• Dynamic data structures

• Data structures that grow and shrink during execution

• Linked lists
• Allow insertions and removals anywhere

• Stacks
• Allow insertions and removals only at top of stack

• Queues
• Allow insertions at the back and removals from the front

• Binary trees
• High-speed searching and sorting of data and efficient elimination

of duplicate data items

Self-Referential Structures
• Self-referential structures

• Structure that contains a pointer to a structure of the same type
• Can be linked together to form useful data structures such as

lists, queues, stacks and trees
• Terminated with a NULL pointer (0)

struct node {
int data;int data;
struct node *nextPtr;

}

• nextPtr
• Points to an object of type node
• Referred to as a link

• Ties one node to another node

Dynamic Memory Allocation

1015

Two self-referential structures linked together

Dynamic Memory Allocation
• Dynamic memory allocation

• Obtain and release memory during execution

• malloc
• Takes number of bytes to allocate

• Use sizeof to determine the size of an object
• Returns pointer of type void *

A pointer may be assigned to any pointer• A void * pointer may be assigned to any pointer
• If no memory available, returns NULL

• Example
newPtr = malloc(sizeof(struct node));

• free
• Deallocates memory allocated by malloc
• Takes a pointer as an argument
• free (newPtr);

Linked Lists
• Linked list

• Linear collection of self-referential class objects, called nodes
• Connected by pointer links
• Accessed via a pointer to the first node of the list
• Subsequent nodes are accessed via the link-pointer member of

the current node
• Link pointer in the last node is set to NULL to mark the list’s end• Link pointer in the last node is set to NULL to mark the list’s end

• Use a linked list instead of an array when
• You have an unpredictable number of data elements
• Your list needs to be sorted quickly

Linked Lists

