BBM 101 - Introduction to

Programming |
Fall 2014, Lecture 5

Aykut Erdem, Erkut Erdem, Fuat Akal

Today

m Iteration Control
" Loop Statements
= for, while, do-while
structures
" break and continue

" Some simple numerical
programs

Loop Statements

m Loop is a group of instructions computer executes repeatedly
while some condition remains true

m Counter-controlled Repetition
= Definite repetition: know how many times loop will execute
= Control variable used to count repetitions

m Sentinel-controlled Repetition
" |Indefinite repetition
= Used when number of repetitions not known
= Sentinel value indicates "end of data"

The for Loop
m Syntax

for (initialization; condition; modify)
statement;

m The program will keep executing the statement inside the for as
long as the condition is true (non zero)

m The condition is tested before each iteration of the loop. The
loop terminates when the condition is false.

m The loop is controlled by a variable which is initialized and
modified by the initialization and modify (e.g. increment
operation) expressions, respectively.

The for Loop (Example)

m Find the sum of numbers between 1 and 100

int sum = 0;
for (i = 0; 1 <= 100; 1++) {

um = sum\t 1; \

increment of
control variable i = initial value O control variable i

loop continuation condition
(100 is the final value of i for which the condition is true)

The for Loop (Further Examples)

m Loop from 100 to 1 in increments of -1
for (i = 100; 1 >=1; i--)
value of i when the loop terminates is 0.

m Loop from 7 to 77 in increments of 7

for (A =7; 1 <= 77; 1+7)

value of i when the loop terminates is 84.

Example: A program that prints the sum of even
numbers between 0 and 100

/*Summation with for */
#include <stdio.h>

int main ()
{
int sum = 0, number;
for (number = 2; number <= 100; number += 2) {
sum += number;

}
printf("Sum is %d\n", sum);
return 0;

Sum is 2550

The while Loop

m Syntax

while (condition)
statement;

m The program will repeatedly execute the statement inside the
while as long as the condition is true (non zero)

m The condition is tested before each iteration of the loop. The
loop terminates when the condition is false.

m If the condition is initially false (0), the statement will not be
executed.

The while Loop (Example)

m Find the sum of numbers between 1 and 100

int sum = 0, 1 = 1;

while (i <= 100) {
sum = sum + 1;
1 =1+ 1;

Counter Controlled Repetition (Example)

m A class of 10 students took a quiz. The grades (integers in the
range 0 to 100) for this quiz are available to you. Determine the
class average on the quiz.

m The algorithm
1. Set total to zero
2. Set grade counter to one

3. While grade counter is less than or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

4. Set the class average to the total divided by ten
5. Print the class average

/* Class average program with counter-controlled repetition */
#include <stdio.h>

int main ()

{

int counter, grade, total, average;

/* initialization phase */
total = O;
counter = 1;

/* processing phase */

while (counter <= 10) {
printf("Enter grade: ");
scanf ("%d", &grade);
total = total + grade;
counter = counter + 1;

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

grade:
grade:
grade:
grade:
grade:
grade:
grade:
grade:
grade:
grade:

Class average

98
76
71
87
83
90
57
79
82
94
is 81

/* termination phase */
average = total / 10.0;
printf("Class average is %d\n", average);

return O0; /* indicate program ended successfully */

Sentinel Controlled Repetition (Example)

m Revisiting the class average problem: Arbitrary number of
students took the quiz this time.

= j.e., number of students will not be known when the program runs

= How is the program going to know when to end?

m Use sentinel value
= Also called signal value, dummy value, or flag value
" Indicates end of processing
= Loop ends when user inputs the sentinel value

= Sentinel value is chosen in a way that it cannot be confused with a regular
input

12

/* Class average program with sentinel-controlled repetition */
#include <stdio.h>
int main ()

{

float average;
int counter, grade, total;

/* initialization phase */
total = 0;
counter = 0;

/* processing phase */
printf("Enter grade, -1 to end: ");
scanf ("%d", &grade);

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

grade,
grade,
grade,
grade,
grade,
grade,
grade,
grade,
grade,

Class average

to
to
to
to
to
to
to
to
to
is

end:
end:
end:
end:
end:
end:
end:
end:
end:
82.50

75
94
97
88
70
64
83
89

while (grade !'= -1) {
total = total + grade;
counter = counter + 1;
printf("Enter grade, -1 to end:
scanf ("%d", &grade);

}

/* termination phase */
if(counter '= 0) {

");

average = (float) total / counter;
printf("Class average is %.2f", average);

} else
printf("No grades were entered\n");

return O; /* indicate program ended successfully */

The do-while Loop

m Syntax

do {
statement;
} while (condition)

m The program will definitely execute the statement at least once
and then repeatedly keep executing the statement inside the
do-while as long as the condition is true (non zero)

m The condition is tested after each iteration of the loop. The loop
terminates when the condition is false.

m If the condition is initially false (0), the statement will be
executed anyways.

14

The do-while Loop (Example)

m Find the sum of numbers between 1 and 100

int sum = 0, 1 = 1;

do { Which example better

: ites for th f do-
sum = sum + 1i; sutesc); eusio do
1 =1+ 1; while loop:

} while (1 <= 100)

m Try until the user enters a valid number

int number;

do {
printf(“Enter a number from O to 100: ”);
scanf(“%d”, &number);

} while (number >= 0 & & number <= 100)

15

Nesting Control Structures

m Problem
= A college has a list of test results (1 = pass, 2 = fail) for 10 students
= Write a program that counts the number of passed and failed students

m Notice that
" The program must process 10 test results
= Counter-controlled loop will be used
= Two counters can be used
= One for number of passes, one for number of fails
= Each test result is a number—eitheralora2
= If the numberis nota 1, we assume thatitisa 2

16

Nesting while loop and if structure

#include <stdio.h>
int main|()

{

int passes = 0, failures = 0, student = 1, result;
— while (student <= 10) {

printf("Enter result: 1(Pass), 2(Fail): ");
scanf("%d", &result);

if (result == 1)
passes++;

else
failures++;

student = student + 1;

— }
printf (“Passed: %d Failed: %d\n", passes, failures);

return 0;

17

#include <stdio.h>

int main ()
{

char grade;

int aCount=0, bCount=0,

Nesting while loop and switch structure

cCount=0, dCount=0, fCount=0 ;

printf("Enter the letter grades. Enter X to exit. \n");

—switch
case
case
case
case
case

~while ((grade = getchar())

(grade) {

'A': case 'a':
'B': case 'b':
'C': case 'c¢':
'D': case 'd':
'F': case 'f':

default:printf (

break;}

\xl) {

++aCount;
++bCount;
++cCount;
++dCount;
++fCount;

break;
break;
break;
break;
break;

"Incorrect letter grade entered.");
printf(“Enter a new grade.\n");

18

Nested Loops

m When a loop body includes another loop construct this is called
a nested loop.

m In a nested loop structure the inner loop is executed from the
beginning every time the body of the outer loop is executed.

value = 0;
for (i=1l; i<=10; i=i+l)
for (j=1; j<=5; j=j+1)
value = value + 1;

m How many times the inner loop is executed? -2 50 times

19

Nested Loops (Example)

m How many times the inner loop is executed?

for (i=1; i<=5; i=i+1) {
for (j=1; j<=i; j=Jj+1)
printf (“*”) ;
printf (“\n”) ;

Output
}
*
* %
) - * % %
: J * k% %
1 1 * %k k %k
2 1,2
3 1,2,3
4 1,2,3,4
5

1,23 45 | 2 15 times

20

Nesting while and for Loops

int main|()

{

int num, count, total = 0;

printf ("Enter a value or a negative number to end: ");
scanf ("%d", &num) ;

while(num >= 0) {
for (count = 1; count <= num; count++)
total = total + count;

printf (“%d %d”,num, total);
printf("Enter a value or a negative number to end:");
scanf("%d", &num) ;
total = 0;
}

return 0;

}

This program reads numbers until the user enters a negative number. For each

number read, it prints the number and the summation of all values between 1 and

the given number. ”

The break Statement

m Causes immediate exit from a while, for, do...while or switch
statement

m Program execution continues with the first statement after the
containing block

m Common uses of the break statement
= Escape early from a loop
= Skip the remainder of a switch statement

22

The break Statement (Example)

#include <stdio.h>

int main () {
int x;

for (x =1; x <= 10 ; x++) {
if (x == 5))
break;
printf (“3%d “, x);
}

printf (“\nBroke out of the loop at x =%d “, x);

return 0O;

1 2 3 4
Broke out of the loop at x = 5

23

The continue Statement

m Skips the remaining statements in the body of a while, for or
do...while statement

= Proceeds with the next iteration of the loop

m while and do...while loops

" Loop-continuation test is evaluated immediately after the continue
statement is executed

m forloop

" |Increment expression is executed, then the loop-continuation test is
evaluated

24

The continue Statement (Example)

#include <stdio.h>

int main () {
int x;

for (x =1; x <= 10 ; x++) {
if (x == 5))
continue;
printf (“%d “, x);
}

printf (“\nUsed continue to skip printing the value 5V);

return 0O;

12346789 10
Used continue to skip printing the wvalue 5

25

Exhaustive Enumeration

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main() {
int x, ans;
printf ("Enter an integer: ");
scanf ("%d", &x);
ans = 0;
while (pow(ans, 3)<abs(x))
ans++;

if (pow(ans,3) !'=abs(x))

printf ("%d is not a perfect cube\n", x);
else {

if (x<0) ans = -ans;

printf ("Cube root of %d is %d\n", x, ans);
}

return 0;

}

This program finds the cube root of a perfect cube using a variant of

guess and check technique called exhaustive enumeration.
 Enumerate all possibilities until we get the right answer or exhaust the space of
possibilities. 26

Approximate Solutions

m Suppose we want to find the square root of any non-negative
number?

m Can't guarantee exact answer, but just look for something close
enough

m Start with exhaustive enumeration
= Take small steps to generate guesses in order
" Check to see if close enough

27

Square root of any non-negative number

int x = 25;
double epsilon = 0.01;
double step = epsilon*epsilon;
int numGuesses = 0;
double ans = 0.0;
while (fabs(ans*ans - x) >= epsilon && ans <= x) {
ans += step;
numGuesses++;
}
printf ("numGuesses = %d\n", numGuesses) ;
if (fabs(ans*ans - x) >= epsilon)
printf ("Failed on square root of %d", x);
else
printf ("%.31f is close to square root of %d", ans, x);

numGuesses = 49990
4.999 is close to square root of 25

28

Square root of any non-negative number

int x = 25;
double epsilon = 0.01;
double step = epsilon*epsilon;
int numGuesses = 0;
double ans = 0.0;
while (fabs(ans*ans - x) >= epsilon && ans <= x) {
ans += step;
numGuesses++;
}
printf ("numGuesses = %d\n", numGuesses) ;
if (fabs(ans*ans - x) >= epsilon)
printf ("Failed on square root of %d", x);

else
printf ("%.31f is close to square root of %d", ans, x);

numGuesses = 49990
4.999 is close to square root of 25

Step could be any small number
* |[ftoo small, takes a long time to find square root

* |f make too large, might skip over answer without close enough ”

Bisection Search

m We know that the square root of x lies between 0 and x,
from mathematics

m Rather than exhaustively trying things starting at O,
suppose instead we pick a number in the middle of this
range

g

m If we are lucky, this answer is close enough

30

Bisection Search

m If not close enough, is guess too big or too small?
mIf g**2 > x, then know g is too big; but now search

p————————

. . hewg _ g i - _ 4
m And if this new g is, for example, g**2 < x, then know
too small; so now search

CHE S N

new g next g g

m At each stage, reduce range of values to search by half

3

Approximating Square Root using Bisection Search

int x = 25;
double epsilon = 0.01;
int numGuesses = 0;

double low = 0.0;

double high = MAX(1.0, x);

double ans = (high + low)/2.0;

while (fabs(ans*ans - x) >= epsilon) {

printf("low = $.51f high = $.51f ans = %.51f\n", low, high, ans);

numGuesses++;
if (ans*ans < x)
low = ans;
else high = ans;
ans = (high + low)/2.0;
}
printf ("numGuesses = %d\n", numGuesses) ;
printf ("%$.51f is close to square root of %d", ans, x);

32

Approximating Square Root using Bisection Search

. low = 0.00000 high = 25.00000 ans = 12.50000
int x = 25; low = 0.00000 high = 12.50000 ans = 6.25000
double epsilon = 0.01; low = 0.00000 high = 6.25000 ans = 3.12500
int numGuesses = 0; low = 3.12500 high = 6.25000 ans = 4.68750
double low = 0.0; low = 4.68750 high = 6.25000 ans = 5.46875
double hlgh - MAX(l.O, X) ; low = 4.68750 hig’h = 5.46875 ans = 5.07812
_ low = 4.68750 high = 5.07812 ans = 4.88281
double ans = (high + low)/ ., - 4 88281 high = 5.07812 ans = 4.98047
while (fabs(ans*ans - X) 3 1ow = 4.98047 high = 5.07812 ans = 5.02930
printf ("low = $.51f higH low = 4.98047 high = 5.02930 ans = 5.00488
numGuesses++; low = 4.98047 high = 5.00488 ans = 4.99268
if (ans*ans < x) low = 4.99268 high = 5.00488 ans = 4.99878
low = 4.99878 high = 5.00488 ans = 5.00183
low = ans; numGuesses = 13
else high = ans, 5.00031 is close to square root of 25
ans = (high + low) /2707
}
printf ("numGuesses = %d\n", numGuesses) ;

printf ("%$.51f is close to square root of %d", ans, x);

Approximating Square Root using Bisection Search

. low = 0.00000 high = 25.00000 ans = 12.50000
int x = 25; low = 0.00000 high = 12.50000 ans = 6.25000
double epsilon = 0.01; low = 0.00000 high = 6.25000 ans = 3.12500
int numGuesses = 0; low = 3.12500 high = 6.25000 ans = 4.68750
double low = 0.0; low = 4.68750 high = 6.25000 ans = 5.46875
double hlgh - MAX(]..O, X) ; low = 4.68750 hig’h = 5.46875 ans = 5.07812
_ low = 4.68750 high = 5.07812 ans = 4.88281
double ans = (high + low)/ ., - 4 88281 high = 5.07812 ans = 4.98047
while (fabs(ans*ans - X) 3 1ow = 4.98047 high = 5.07812 ans = 5.02930
printf ("low = $.51f higH low = 4.98047 high = 5.02930 ans = 5.00488
numGuesses++; low = 4.98047 high = 5.00488 ans = 4.99268
if (ans*ans < x) low = 4.99268 high = 5.00488 ans = 4.99878
low = 4.99878 high = 5.00488 ans = 5.00183
low = ans; numGuesses = 13
else high = ansy 5.00031 is close to square root of 25
ans = (high + low) /2707
}
printf ("numGuesses = %d\n", numGuesses) ;

printf ("%$.51f is close to square root of %d", ans, x);

* Bisection search radically reduces computation time — being smart about
generating guesses is important
* Should work well on problems with “ordering” property — value of function

being solved varies monotonically with input value
* Here ans*ans which grows as ans grows 2

Summary

m Iteration Control
" Loop Statements
= for, while, do-while
structures
" break and continue

" Some simple numerical
programs

35

Next week

m Functions
" Definitions
" |nvocation
" Parameter Lists
= Return Values
" Prototypes

m Variable Scopes
" Block Structure
= Global and Local Variables
= Static Variables

m Recursion

36

