
Programming in

Hacettepe University

Computer Engineering Department

BBM103 Introduction to Programming Lab 1

Week 10

Fall 2016



Python Comprehensions

• Python comprehensions are syntactic constructs that enable
sequences to be built from other sequences in a clear and
concise manner. Python comprehensions are of three types
namely:
 list comprehensions,
 set comprehensions and
 dict comprehensions.



Comprehensions

Example:



List Comprehensions

• List comprehensions provide a concise way to create a new list of
elements that satisfies a given condition from an iterable. An iterable
is any python construct that can be looped over.

Example: for loop list comprehension

Output:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Output:
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]



Output:
[0, 4, 16, 36, 64]

Example:

Output:

S: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

V: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096]

M: [0, 4, 16, 36, 64]

Example:



Nested for loops in List Comprehensions

• List comprehensions can also be used with multiple or nested for
loops.

Example: nested for loops list comprehension

Output:
[(1, 3), (1, 4), (2, 3), (2, 1), 

(2, 4), (3, 1), (3, 4)]

Output:
[(1, 3), (1, 4), (2, 3), (2, 1), 

(2, 4), (3, 1), (3, 4)]



Set Comprehensions

• In set comprehensions, we use the braces rather than square 
brackets.

Example:

Output:
<class 'set'>

{0, 1, 64, 4, 36, 9, 16, 49, 81, 25}



Dict Comprehensions

Example:

Output:
<class 'dict'>

{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}



Output:

Noprimes: [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,

32,34, 36,38, 40, 42, 44, 46, 48, 6, 9, 12, 15, 18, 21, 24,27,

30,33,36, 39, 42, 45, 48, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44,

48, 10,15,20, 25, 30, 35, 40, 45, 12, 18, 24, 30, 36, 42, 48,14,

21,28,35, 42, 49]

Primes[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Example:



Output:

['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']

['THE', 'the', 3]

['QUICK', 'quick', 5]

['BROWN', 'brown', 5]

['FOX', 'fox', 3]

['JUMPS', 'jumps', 5]

['OVER', 'over', 4]

['THE', 'the', 3]

['LAZY', 'lazy', 4]

['DOG', 'dog', 3]

Example:



Output:
[(1, 'a'), (2, 'b'), (3, 'c')]

Output:
[1, 2, 3, 4, 5, 6, 7, 8]

Example:

Example:



Example:



• matplotlib is a Python 2D plotting library 

• You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc.

• Installing matplotlib: http://matplotlib.org/users/installing.html

• matplotlib in PyCharm: https://www.jetbrains.com/help/pycharm/2016.1/matplotlib-
support.html

• Or use Anaconda that provides numerous built-in Python packages including matplotlib: 
https://www.continuum.io/downloads

2D Data Plotting in Python:

http://matplotlib.org/users/installing.html
https://www.jetbrains.com/help/pycharm/2016.1/matplotlib-support.html
https://www.continuum.io/downloads


• Output:

Vertical Bar Chart Plotting 

• Example:



• Output:

Horizontal Bar Chart Plotting 

• Example:



• NumPy (http://www.numpy.org) is the fundamental package for scientific computing 
with Python. It supports among other things:
• a powerful N-dimensional array object,

• sophisticated (broadcasting) functions,

• useful linear algebra, Fourier transform, and random number capabilities,

• efficient multi-dimensional container of generic data,

• arbitrary data-types.

• Installing Packages in PyCharm (search for numpy): 
https://www.jetbrains.com/help/pycharm/2016.1/installing-uninstalling-and-
upgrading-packages.html

• Or use Anaconda that provides numerous built-in Python packages including NumPy: 
https://www.continuum.io/downloads

- scientific computing with Python 

http://www.numpy.org/
https://www.jetbrains.com/help/pycharm/2016.1/installing-uninstalling-and-upgrading-packages.html
https://www.continuum.io/downloads


• Output:

A simple plot with a custom dashed line

• Example:

New function: numpy.linspace(start, stop)

Returns evenly spaced numbers over a specified interval [start, stop].



• Output:

A simple plot of fill function

• Example:

New functions: 
numpy.sin()- Trigonometric sine, element-wise
numpy.exp()- Calculate the exponential of all elements in the input array
numpy.pi() - π mathematical constant



• Output:Histogram Plotting 

• Example:

New function: 
numpy.random.randn(dimension)

Returns a sample (or samples) from the 
“standard normal” distribution

A histogram is a graphical 
representation of the 
distribution of numerical data.



Histogram Plotting Continued (Subplots)

• Example:

• Output:



• For more matplotlib examples: 
http://matplotlib.org/examples/index.html

• Plotting Commands Summary: 
http://matplotlib.org/api/pyplot_summary.html

• NumPy Manual: https://docs.scipy.org/doc/numpy/index.html

2D Plotting and Scientific Computing in Python

http://matplotlib.org/examples/index.html
http://matplotlib.org/api/pyplot_summary.html
https://docs.scipy.org/doc/numpy/index.html


Debugging

• Debugging is the process of identifying and removing errors that prevent 
correct operation of computer software or a system.

• PyCharm provides a full range of facilities for debugging your source code:
• Breakpoints in Python.
• Customizable breakpoint properties: conditions, pass count, etc.
• Frames, variables, and watches views in the debugger UI.
• Runtime evaluation of expressions.

• For detailed explanation of the debugging process in PyCharm: 
https://www.jetbrains.com/help/pycharm/2016.1/debugging.html

https://www.jetbrains.com/help/pycharm/2016.1/debugging.html


Debugging Cont.

• General debugging steps:

1. Configure the debugger options.
2. Define a run/debug configuration.
3. Create breakpoints in the source code.
4. Launch a debugging session.
5. Pause or resume the debugging session as required.
6. During the debugger session, step through the breakpoints, 

evaluate expressions, change values on-the-fly , examine 
suspended program, explore frames, and set watches . 



Starting the Debugger Session

• Set breakpoints in the source 
code.

• Open the desired Python script in 
the editor, or select it in the 
Project tool window.

• On the context menu, choose 
Debug <script name>: 



PyCharm Debug Tool Window

• The Debug tool window becomes available when you start 
debugging.

• It displays the output generated by the debugging session for your 
application.

• For Toolbars and Items descriptions: 
https://www.jetbrains.com/help/pycharm/2016.1/debug-tool-
window.html

https://www.jetbrains.com/help/pycharm/2016.1/debug-tool-window.html

