Course Introduction

BBM 101 - Introduction to Programming I

Hacettepe University Fall 2016

Fuat Akal, Aykut Erdem, Erkut Erdem

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140 University of Washington

Welcome to BBM 101

- This course teaches core programming concepts with an emphasis on data manipulation tasks from science, engineering, and business
- Goal by the end of the semester: Given a data source and a problem description, you can independently write a complete, useful program to solve the problem

Course Staff

- Lecturers:
 - Asst. Prof. Dr. Fuat Akal
 - Asst. Prof. Dr. Aykut Erdem
 - Asst. Prof. Dr. Erkut Erdem

Course Staff

- TAs (Teaching Assistants):
 - Necva Bölücü
 - Selma Dilek
 - Burcu Yalçıner
 - Selim Yılmaz

Do not hesitate to ask TAs for help!

Learning Objectives

- Computational problem-solving
 - Writing a program will become your "go-to" solution for data analysis tasks.
- Basic Python proficiency
 - Including experience with relevant libraries for data manipulation, scientific computing, and visualization.
- Experience working with real datasets
 - astronomy, biology, linguistics, oceanography, open government, social networks, and more.
 - You will see that these are easy to process with a program, and that doing so yields insight.

What This Course is not

- A "skills course" in Python
 - ...though you will become proficient in the basics of the Python programming language
 - ...and you will gain experience with some important Python libraries
- A data analysis / "data science" / data visualization course
 - There will be very little statistics knowledge assumed or taught
- A "project" course
 - the assignments are "real," but are intended to teach specific programming concepts
- A "software engineering" course
 - Programming is the starting point of computer science and software engineering

All of Science is Reducing to Computational Data Manipulation

Old model: "Query the world" (Data acquisition coupled to a specific hypothesis) New model: "Download the world" (Data acquisition supports many hypotheses)

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Example: Assessing Treatment Efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	G	0	0	^	0	0 Zin	code of clinic	8405	98445
5	3	<mark>z</mark> nu	mber of	tollow up	S	5	5		98405	98332
6	0	(wit	:hin 16 v	veeks afte	er	0	0	Q	08405	<mark>98</mark> 405
7	2	2 tre	atment	enrollmer	nt.	2	2	Zip code o	of patient	3402
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0		tion. [Door th	o dictor	nco hot	woon t		98405	98404
11	0	Ques		JUES III	euistui	ice bei	ween u	le	98405	98402
12	1	patie	ent's ha	ome an	d clinic	influer	nce the	number	98405	98405
13	1	of fo	الارمار	nc and	theref	nrø trør	ntment	efficacy?	98404	98404
14	2							cjjicacy:	98499	98498
15	0	0	0	0	0	0	0	0	98499	98445
16	1	2	4	5	7	7	7	7	98499	98405
17	1	1	1	2	2	2	2	2	98499	98498

Python Program to Assess Treatment Efficacy

This program reads an Excel spreadsheet whose penultimate # and antepenultimate columns are zip codes.

It adds a new last column for the distance between those zip# codes, and outputs in CSV (comma-separated values) format.# Call the program with two numeric values: the first and last# row to include.

The output contains the column headers and those rows.

Libraries to use

import random
import sys
import xlrd # library for working with Excel spreadsheets
import time
from gdapi import GoogleDirections

No key needed if few queries

gd = GoogleDirections('dummy-Google-key')

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')
sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process
first_row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2]+1), sheet.nrows)

def comma_separated(lst):
 return ",".join([str(s) for s in lst])

headers = sheet.row_values(0) + ["distance"]
print comma_separated(headers)

for rownum in range(first row,row limit): row = sheet.row values(rownum) (zip1, zip2) = row[-3:-1]if zip1 and zip2: # Clean the data zip1 = str(int(zip1))zip2 = str(int(zip2))row[-3:-1] = [zip1, zip2] # Compute the distance via Google Maps trv: distance = gd.query(zip1,zip2).distance except: print >> sys.stderr, "Error computing distance:", zip1, zip2 distance = "" # Print the row with the distance print comma separated(row + [distance]) # Avoid too many Google queries in rapid succession time.sleep(random.random()+0.5)

23 lines of executable code!

Some statistics (from U.S.)

The value of a computer science education

Source: Brookings

Slide credit: code.org

Some statistics (from U.S.) Computing jobs are the #1 source of new wages in the United States

500,000 current openings: These jobs are in *every* industry and *every* state, and they're projected to grow at twice the rate of all other jobs.

Slide credit: code.org

Sources: Bureau of Labor Statistics, National Center for Education Statistics

Slide credit: code.org

*STEM = Science, Technology, Engineering, and Math

Course Logistics

- Website: http://web.cs.hacettepe.edu.tr/~bbm101/
- See the website for all administrative details
- Read the handouts and required texts, *before* the lecture
- Take notes!
- Follow the course in Piazza
 https://piazza.com/hacettepe.edu.tr/fall20
 16/bbm101

Academic Integrity

- Honest work is required of a scientist or engineer.
- Collaboration policy on the course web. Read it!
 - Discussion is permitted.
 - Carrying materials from discussion is not permitted.
 - Everything you turn in must be your own work.
 - Cite your sources, explain any unconventional action.
 - You may not view others' work.
 - If you have a question, ask.
- We trust you completely.
- But we have no sympathy for trust violations nor should you!

How to Succeed

- No prerequisites
- Non-predictors for success:
 - Past programming experience
 - Enthusiasm for games or computers
- Programming and data analysis are challenging
- Every one of you can succeed
 - There is no such thing as a "born programmer"
 - Work hard
 - Follow directions
 - Be methodical
 - *Think* before you act
 - Try on your own, then ask for help
 - Start early

Integrated Development Environment (IDE)

• There are many!

pedrokroger.net/choosing-best-python-ide/

Home Compositions Publications Python Quick Reference Music for Ge

Choosing the Best Python IDE

In this article I'll review six Python IDEs. I'm mainly interested in IDEs that are cross-platform and have strong web development support (Django, HTML templates, JavaScript, etc). Because of this, well-regarded IDEs like PyScripter and Python Tools for Visual Studio are out since they are Windows-only. The Python website maintains a full list of Python IDEs.

PyCharm

PyCharm is one of the most popular Python IDEs and deservedly so. It's packed with features such as incredible code completion, code analysis, code navigation, top-notch Django, JavaScript, HTML, and CSS support, great debugger, and much more.

				com/_mcpy = bjango = (*/Co	nue)	upango	1
	A 19		C Unnan	ved 🕶 🕨 🐝 🕬 🚏 👔			
□ Project * ③ 🕸 🕸 . !**	🦽 djar	go/sho	rtcuts.py >	conf/_initpy ×	K	10	django//_initpy × 🎽 _doctest.py × 🤘 test/client.py ×
middleware	35			desc = ("setting %s" % name 📷			
template	36			raise ImproperlyConfigured(edef	encode multipart(boundary, data):
templatetags	37			"Requested %s, but sett		1	
🐨 🗈 test	38			"You must either define			Foredas multipart DOFT data from a distingant of
🛁initpy	39			"or call settings.confi			Encodes multipart Posi data from a dictionary of
_doctest.py	40 6			% (desc. ENVIRONMENT VA			
client.py	41						The key will be used as the form data name; the
html.pv	42		colf	wrapped = Settings(settin			as content. If the value is a file, the content:
runner.pv	42		201				as an application/octet-stream; otherwise, str()
signals.pv	43	4.4	of antita (cold appa).		é	1.11.11	
simple ov	44		der	etattr_(sett, name): -			lines = []
Testrases ov	45		11	selfwrapped is empty: _			to bytes = lambda s: force bytes(s, settings,DE
autile ov	46			selfsetup(name)			
h Flutie	47	ė.	ret	<pre>curn getattr(selfwrapped, n _</pre>			# Not by any means perfect, but good enough for
h Dulaur	48			=			is file - lambda thing: hasattr(thing "read") :
	49	0	def cor	figure(self, default_setting =			is_rice = compos ching, hasaccr(ching, read) a
e chastada au	50						A First bits of the mildlenet from data and dites
shortcuts.py	51		Cal	led to manually configure th			# Each bit of the multipart form data could be e
▶ □ docs	52		Dar	ameter sets where to retriev			# file, or a *list* of form values and/or files.
P extras			par	uncer sees more to retracy			<pre># names can be duplicated!</pre>

Our Recommendation: PyCharm

Python Version

- Whatever IDE you choose to work with, always stick to **Python version 3.5.2**
- Always use this version to code your assignments.

Books

• There are many!

Our Recommendation for Books

- <u>The Python Tutorial</u>, available from the Python website.
 - This is good for explaining the nuts and bolts of how Python works.
- <u>Introduction to Computation and Programming Using Python</u>, <u>Second Edition</u>, John V. Guttag, MIT Press, August 2016
- Think Python, 2nd edition
 - Freely available online in <u>HTML</u> and <u>PDF</u>.
 - Also available for purchase as a printed book, but don't buy the first edition.
 - This book introduces more conceptual material, motivating computational thinking.
- There is an <u>interactive version of "How to Think Like a Computer</u> <u>Scientist"</u> (the first edition of "Think Python"), which lets you type and run Python code directly while reading the book.