
Computers
Binary	Representations,	Components,	Architectures,	Programming	Languages

BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut	Erdem,	Erkut Erdem

1

Today
• Stored	program	computers	

– Components	 of	a	computer
– Von	Neumann	architecture

• Programs	and	Data
– Binary	data	representations
– Bit	operations

• Programming	 languages	(PLs)
– Syntax	and	semantics
– Dimensions	of	a	PL
– Programming	paradigms
– A	partial	history	of	PLs

Today
• Stored	program	computers	

– Components	 of	a	computer
– Von	Neumann	architecture

• Programs	and	Data
– Binary	data	representations
– Bit	operations

• Programming	 languages
– Syntax	and	semantics
– Dimensions	of	a	PL
– Programming	paradigms
– A	brief	history	of	PLs

Recall:	Stored	Program	Concept
• Stored-program	 concept	 is	the	fundamental	principle	
of	the	ENIAC’s	 successor,	 the	EDVAC	(Electronic	
Discrete	Variable	Automatic	Computer)	

• Instructions	were	stored	in	memory	 sequentially	
with	their	data			

• Instructions	were	executed	 sequentially	 except	
where	a	conditional	 instruction	would	cause	a	jump	
to	an	instruction	 someplace	other	than	the	next	
instruction

Slide	credit:	G.	Kesden

Stored	Program	Concept

• “Fetch-Decode-Execute”	 cycle

Central	
Processing	
Unit

Arithmetic	
Unit

Registers

Input Output

Memory

Address	 Contents			
200					1000	0001	(ADD	to	R1)			
201 0110	0110	(data	value	102)			
202 1001	0001	(ADD	to	R1)			
203					0110	0110	(data	at	address	102)			
204					1111	0111	(JUMP	7	bytes)	Slide	credit:	G.	Kesden

Stored	Program	Concept
• Mauchly and	Eckert	are	generally	credited	with	the	
idea	of	the	stored-program	 	

• BUT:	John	von	Neumann	publishes	a	draft	report	that	
describes	 the	concept	and	earns	the	recognition	as	
the	inventor	of	the	concept
– “von	Neumann	architecture”
– A	First	Draft	of	a	Report	of	the	EDVAC	
published	in	1945

– http://www.wps.com/projects/EDVAC/	

Slide	credit:	G.	Kesden

The	Integrated	Circuit
• Robert	Noyce and	Jack	Kilby are	credited	with	the			
invention	of	the	integrated	circuit	(IC)	or	microchip.	
– Kilby wins	Nobel	Prize	in	Physics	in	2000.	
– Robert	Noyce co-founded	 Intel	in	1968.			

• By	the	mid	1970s,	ICs	contained	tens	of	thousands	 of			
transistors	per	chip.	
– In	1970,	Intel	created	the	1103--the	first	generally	available	
DRAM	chip.		

– Today,	you	would	need	more	than	65,000	of	them	to	put	8	
MB	of	memory	into	a	PC.

Slide	credit:	G.	Kesden

Units	of	Memory
• Byte B 8	bits	(8b)
• Kilobyte KB 1024	B =	210 bytes ≈	103 bytes
• Megabyte MB 1024	KB =	220 bytes ≈	106 bytes
• Gigabyte GB 1024	MB =	230 bytes ≈	109 bytes
• Terabyte TB 1024	GB =	240 bytes ≈	1012 bytes
• Petabyte PB 1024	TB =	250 bytes ≈	1015	bytes

• How	many	bytes	can	be	stored	in	a	4GB	flash	drive?

• How	many	bytes/second	 is	a	16	Mbps	cable	modem	
connection?

Slide	credit:	G.	Kesden

How	Time	Flies

Commodore	64	(1982)
40	cm	X	22	cm	X	8	cm
64	KB	of	IC	memory
$595

Apple	iShuffle (2008)
3	cm	X	3	cm	X	1	cm
2	GB	of	flash	memory
$49

Slide	credit:	G.	Kesden

Moore’s	Law
• Gordon	Moore	co-founded	Intel	Corporation	 in	1968.	

• Famous	for	his	prediction	on	the	growth	of	the	semiconductor	
industry:	Moore’s	Law

– ftp://download.intel.com/research/silicon/moorespaper.pdf
– An	empirical	observation	stating	in	effect	 that	the	complexity	of	

integrated	circuits	doubles	every	18	months.	(“complexity”	generally	
means	number	of	transistors	on	a	chip)

Slide	credit:	G.	Kesden

Moore’s	Law

Source:	Intel	Corporation

A	Detailed	View 8 Chapter 1 A Tour of Computer Systems

Figure 1.4
Hardware organization
of a typical system. CPU:
Central Processing Unit,
ALU: Arithmetic/Logic
Unit, PC: Program counter,
USB: Universal Serial Bus.

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk
hello executable

stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that
varies across systems. Most machines today have word sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). For the sake of our discussion here, we will assume a word
size of 4 bytes, and we will assume that buses transfer only one word at a time.

I/O Devices

Input/output (I/O) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

Each I/O device is connected to the I/O bus by either a controller or an adapter.
The distinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often called
the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/O bus and an I/O device.

Image:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

8 Chapter 1 A Tour of Computer Systems

Figure 1.4
Hardware organization
of a typical system. CPU:
Central Processing Unit,
ALU: Arithmetic/Logic
Unit, PC: Program counter,
USB: Universal Serial Bus.

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk
hello executable

stored on disk

systems, but all systems have a similar look and feel. Don’t worry about the
complexity of this figure just now. We will get to its various details in stages
throughout the course of the book.

Buses

Running throughout the system is a collection of electrical conduits called buses
that carry bytes of information back and forth between the components. Buses
are typically designed to transfer fixed-sized chunks of bytes known as words. The
number of bytes in a word (the word size) is a fundamental system parameter that
varies across systems. Most machines today have word sizes of either 4 bytes (32
bits) or 8 bytes (64 bits). For the sake of our discussion here, we will assume a word
size of 4 bytes, and we will assume that buses transfer only one word at a time.

I/O Devices

Input/output (I/O) devices are the system’s connection to the external world. Our
example system has four I/O devices: a keyboard and mouse for user input, a
display for user output, and a disk drive (or simply disk) for long-term storage of
data and programs. Initially, the executable hello program resides on the disk.

Each I/O device is connected to the I/O bus by either a controller or an adapter.
The distinction between the two is mainly one of packaging. Controllers are chip
sets in the device itself or on the system’s main printed circuit board (often called
the motherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between
the I/O bus and an I/O device.

The	Von	Neumann	 architecture

Motherboard	Layout	(Intel	486)

Slide	credit:		D.	Stotts

Motherboard	Layout	(Intel	486)

CPU
regs
cache

Main	memory
RAM

Disk	
drives,	
DVD

Network,
cloud

USB

Slide	credit:		D.	Stotts

What Happens When You Power on
Your Computer?

• A	minimum	amount	of	information	is	read	from	secondary	
memory	into	main	memory

• Control	is	transferred	to	that	area	of	main	memory;	this	code	
reads	the	core	of	the	OS,	called	the	kernel

• The	kernel	executes	the	 initial	process

• This	process	loads	a	full	OS	off	disk	(or	cloud)

• Called	bootstrapping	 (pulling	oneself	up	by	one’s	bootstraps)…	
the	computer	“boots	up”

• OS	then	runs	all	the	other	programs	you	write	and	use…
Slide	credit:		D.	Stotts

Main	memory
RAM

kernel

CPUDisk

OS	loads

kernel

CPU	runs	kernel

Kernel	talks	to	disk

CPU	runs	full	OS
OS	

Keyboard
Mic

camera

User	input

Data	to	programs

Data		output
wireless,	usb,	
net,	print	port,
sound,	video

CPU	runs	programs

Slide	credit:		D.	Stotts

Memory
• Fixed-size	units	(cells)	

to	store	data

• Each	cell	has	its	own	address.

• Volatile	vs.	non-volatile

– Volatile	memories	 lose	
information	if	powered	off
(e.g.	RAM)

– Nonvolatile	memories	retain	
value	even	if	powered	off
(e.g.	ROM,	cache	memory,	
SSDs)

Bus	interface
Bus	interface
Bus	interface
Bus	interface
Bus	interface
Bus	interface
Bus	interface
Bus	interface

0
4
8
.
.
.
.
.

address

a memory
cell

Arithmetic-Logic	Unit	(ALU)
• ALU	+	Control	=	Processor
• Registers. Storage	cells	that	holds	heavily	used	program	data

– Without	address,	specific	purpose
– e.g. the	operands	of	an	arithmetic	operation,	 the	result	of	
an	operation,	 etc.	

PC

Bus	interface

ALU

Register	file

CPU	chip

Traditional	Bus	Structure
• A	bus	is	a	collection	of	parallel	wires	that	carry	address,	data,	

and	control	signals.
• Buses	are	typically	shared	by	multiple	devices.

Main
memory

I/O	
bridgeBus	interface

ALU

Register	file

CPU	chip

System	bus Memory	bus

Image:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Disk	Drives

SpindleArm

Actuator

Platters

Electronics
(including	a	
processor	
and	memory!)

SCSI
connector

Image	courtesy	of	Seagate	Technology

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

A	solid-state	drives	(SSDs)
• No	moving	parts

Magnetic	disk	drives
• Rotating	disks

The	Memory	Hierarchy	
• Storage	devices	form	a	hierarchy	
• Storage	at	one	level	serves	as	a	cache	for	storage	at	the	next	

lower	level.14 Chapter 1 A Tour of Computer Systems

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines
retrieved from L2 cache.

L2 cache holds cache lines
retrieved from L3 cache.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network server.

Regs

L3 cache
(SRAM)

L2 cache
(SRAM)

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(distributed file systems, Web servers)

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Larger,
slower,

and
cheaper

(per byte)
storage
devices

L0:

L1:

L2:

L3:

L4:

L5:

L6:

L3 cache holds cache lines
retrieved from memory.

Figure 1.9 An example of a memory hierarchy.

Just as programmers can exploit knowledge of the different caches to improve
performance, programmers can exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much more to say about this.

1.7 The Operating System Manages the Hardware

Back to our hello example. When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
a layer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications, and (2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The operating system achieves both goals via the

Figure 1.10
Layered view of a
computer system.

Application programs

Operating system

Main memory I/O devicesProcessor

Software

Hardware

Image:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Components	of	a	Computer	(cont’d)

• Sequential	execution	of	machine
instructions	
– The	sequence	of	instructions	are	

stored	in	the	memory.
¢ One	instruction	at	a	time	 is	fetched	

from	the	memory	to	the	control	unit.
– They	are	read	in	and	treated	

just	like	data.

• PC	(program	counter)	is	responsible	 from	the	flow	of	control.

• PC	points	a	memory	 location	containing	an	instruction	on	the	
sequence.

• Early	programmers	(coders)	write	programs	via	machine	instructions.

Memory

Control ALU PC

inst1
inst2
inst3
.
.
instN

Assembly	Language
• A	low-level	programming	 language	for	computers

• More	readable,	 English-like	abbreviations	 for	
instructions

• Architecture-specific

• Example:

MOV AL, 61h
MOV AX, BX
ADD EAX, 10
XOR EAX, EAX

CPU

• Programmer-Visible	State
– PC:	Program	counter

• Address	of	next	instruction
– Register	file

• Heavily	used	program	data
– Condition	codes

• Store	status	information	about	most	
recent	arithmetic	operation

• Used	for	conditional	branching

PC Registers

Memory

Object	Code
Program	Data
OS	Data

Addresses

Data

Instructions

Stack

Condition
Codes

–Memory
• Byte	addressable	array
• Code,	user	data,	(some)	OS	data
• Includes	stack	used	to	support	
procedures

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Assembly	Programmer’s	View

The	Operating	System	(OS)
• The	operating	system	is	a	layer	of	software	interposed	

between	 the	application	program	and	the	hardware.
– Unix,	Linux,	Mac	OS,	Windows,	etc.

• All	attempts	by	an	application	program	to	manipulate	the	
hardware	must	go	through	the	OS.

• The	operating	system	has	two	primary	purposes:	
1. To	protect	the	hardware	from	misuse	by	runaway	applications,	and	
2. To	provide	applications	with	simple	and	uniform	mechanisms	for	

manipulating	complicated	and	often	wildly	different	 low-level	
hardware	devices.

14 Chapter 1 A Tour of Computer Systems

CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines
retrieved from L2 cache.

L2 cache holds cache lines
retrieved from L3 cache.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network server.

Regs

L3 cache
(SRAM)

L2 cache
(SRAM)

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(distributed file systems, Web servers)

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Larger,
slower,

and
cheaper

(per byte)
storage
devices

L0:

L1:

L2:

L3:

L4:

L5:

L6:

L3 cache holds cache lines
retrieved from memory.

Figure 1.9 An example of a memory hierarchy.

Just as programmers can exploit knowledge of the different caches to improve
performance, programmers can exploit their understanding of the entire memory
hierarchy. Chapter 6 will have much more to say about this.

1.7 The Operating System Manages the Hardware

Back to our hello example. When the shell loaded and ran the hello program,
and when the hello program printed its message, neither program accessed the
keyboard, display, disk, or main memory directly. Rather, they relied on the
services provided by the operating system. We can think of the operating system as
a layer of software interposed between the application program and the hardware,
as shown in Figure 1.10. All attempts by an application program to manipulate the
hardware must go through the operating system.

The operating system has two primary purposes: (1) to protect the hardware
from misuse by runaway applications, and (2) to provide applications with simple
and uniform mechanisms for manipulating complicated and often wildly different
low-level hardware devices. The operating system achieves both goals via the

Figure 1.10
Layered view of a
computer system.

Application programs

Operating system

Main memory I/O devicesProcessor

Software

Hardware

Abstractions	Provided	by	an	OS
• The	operating	system	achieves	both	goals	via	the	fundamental	

“abstractions”
– Processes:	The	operating	system’s	abstraction	for	running	programs.
– Virtual	Memory:	An	abstraction	that	provides	each	process	with	the	

illusion	that	it	has	exclusive	use	of	the	main	memory.	
– Files:	Abstractions	for	I/O	devices

Section 1.7 The Operating System Manages the Hardware 15

Figure 1.11
Abstractions provided by
an operating system.

Main memory I/O devicesProcessor

Processes

Virtual memory

Files

fundamental abstractions shown in Figure 1.11: processes, virtual memory, and
files. As this figure suggests, files are abstractions for I/O devices, virtual memory
is an abstraction for both the main memory and disk I/O devices, and processes
are abstractions for the processor, main memory, and I/O devices. We will discuss
each in turn.

Aside Unix and Posix

The 1960s was an era of huge, complex operating systems, such as IBM’s OS/360 and Honeywell’s
Multics systems. While OS/360 was one of the most successful software projects in history, Multics
dragged on for years and never achieved wide-scale use. Bell Laboratories was an original partner in the
Multics project, but dropped out in 1969 because of concern over the complexity of the project and the
lack of progress. In reaction to their unpleasant Multics experience, a group of Bell Labs researchers—
Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe Ossanna—began work in 1969 on a simpler
operating system for a DEC PDP-7 computer, written entirely in machine language. Many of the ideas
in the new system, such as the hierarchical file system and the notion of a shell as a user-level process,
were borrowed from Multics but implemented in a smaller, simpler package. In 1970, Brian Kernighan
dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten in
C in 1973, and Unix was announced to the outside world in 1974 [89].

Because Bell Labs made the source code available to schools with generous terms, Unix developed
a large following at universities. The most influential work was done at the University of California
at Berkeley in the late 1970s and early 1980s, with Berkeley researchers adding virtual memory and
the Internet protocols in a series of releases called Unix 4.xBSD (Berkeley Software Distribution).
Concurrently, Bell Labs was releasing their own versions, which became known as System V Unix.
Versions from other vendors, such as the Sun Microsystems Solaris system, were derived from these
original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new
and often incompatible features. To combat this trend, IEEE (Institute for Electrical and Electronics
Engineers) sponsored an effort to standardize Unix, later dubbed “Posix” by Richard Stallman. The
result was a family of standards, known as the Posix standards, that cover such issues as the C language
interface for Unix system calls, shell programs and utilities, threads, and network programming. As
more systems comply more fully with the Posix standards, the differences between Unix versions are
gradually disappearing.

Today
• Stored	program	computers	

– Components	 of	a	computer
– Von	Neumann	architecture

• Programs	and	Data
– Binary	data	representations
– Bit	operations

• Programming	 languages
– Syntax	and	semantics
– Dimensions	of	a	PL
– Programming	paradigms
– A	partial	history	of	PLs

Binary	Data	Representations

0.0V
0.5V

2.8V
3.3V

0 1 0

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

¢ Binary - taking	two	values
¢ bit	=	0 or 1

§ False	or	True
§ Off	or	On
§ Low	voltage	or	High	voltage

Encoding	Byte	Values
• Byte	=	8	bits
– Binary	000000002 to	111111112
– Decimal:	010 to	25510
– Hexadecimal	0016 to	FF16
• Base	16	number	representation
• Use	characters	‘0’	to	‘9’	and	‘A’	to	‘F’

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Byte-Oriented	Memory	Organization

• Programs	Refer	to	Virtual	Addresses
– Conceptually	very	large	array	of	bytes
– System	provides	address	 space	private	to	particular	“process”

• Program	being	executed
• Program	can	clobber	its	own	data,	but	not	that	of	others

• Compiler	+	Run-Time	System	Control	Allocation
– Where	different	program	objects	should	be	stored
– All	allocation	within	single	virtual	address	 space

• • •

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Machine	Words
• Machine	Has	“Word	Size”
– Nominal	size	of	integer-valued	data
• Including	addresses

– Most	current	machines	use	32	bits	(4	bytes)	words
• Limits	addresses	 to	4GB
• Becoming	too	small	for	memory-intensive	applications

– High-end	systems	use	64	bits	(8	bytes)	words
• Potential	address	space	≈	1.8	X	1019 bytes
• x86-64	machines	support	48-bit	addresses:	256	Terabytes

– Machines	support	multiple	data	formats
• Fractions	or	multiples	of	word	size
• Always	integral	number	of	bytes

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Word-Oriented	Memory	Organization

• Addresses	 Specify	Byte	
Locations
– Address	of	first	byte	 in	word
– Addresses	of	successive	words	
differ	by	4	(32-bit)	or	8	(64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

von	Neumann	Revisited	
Programs	and	their	data	all	stored	together	in	memory!

• Some	0’s	1’s	chunks	stand	for	numbers

• Some	stand	for	characters,	 text

• Some	stand	for	images,	videos,	etc.

• Some	stand	for	memory	 locations

• Some	stand	for	program	 instructions	 like	“add	2	
numbers”	or	“save	register	5	to	memory	 location	
2145768”

• Computer	 sorts	it	all	out	during	 the	fetch-execute	 cycle

Adopted	from:		D.	Stotts

Byte	Ordering

• How	should	bytes	within	a	multi-byte	word	be	
ordered	in	memory?

• Conventions
– Big	Endian:	Sun,	PPC	Mac,	Internet
• Least	significant	byte	has	the	highest	address

– Little	Endian:	x86
• Least	significant	byte	has	the	lowest	address

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Byte	Ordering	Example
• Big	Endian
– Least	significant	byte	has	highest	address

• Little	Endian
– Least	significant	byte	has	lowest	address

• Example
– Assume	we	have	a	4-byte	data	representation	0x01234567	
stored	at	the	address	0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

The	Origin	of	“endian”

“Gulliver	finds	out	that	there	is	a	law,	
proclaimed	by	the	grandfather	of	the	
present	ruler,	requiring	all	citizens	of	
Lilliput	to	break	their	eggs	only	at	the	
little	ends.	Of	course,	all	those	citizens	
who	broke	their	eggs	at	the	big	ends	
were	angered	by	the	proclamation.	Civil	
war	broke	out	between	 the	Little-Endians
and	the	Big-Endians,	resulting	in	the	Big-
Endians taking	refuge	on	a	nearby		island,	
the	kingdom	of	Blefuscu.”	

– Danny	Cohen,	 On	Holy	Wars	and	A	Plea	For	Peace,	1980

Illustration	by	Chris	Beatrice

Representing	Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation
(will be covered in BBM 231)

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Boolean	Algebra
• Developed	 by	George	Boole	in	19th	Century
– Algebraic	representation	of	logic

• Encode	“True”	as	1	and	“False”	as	0

And
n A&B	=	1	when	both	A=1	and	B=1

Or
n A|B	=	1	when	either	A=1	or	B=1

Not
n ~A	=	1	when	A=0

Exclusive-Or	(Xor)
n A^B	=	1	when	either	A=1	or	B=1,	but	not	both

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Application	of	Boolean	Algebra

• Applied	to	Digital	Systems	by	Claude	Shannon
– 1937	MIT	Master’s	Thesis
– Reason	about	networks	of	relay	switches
• Encode	closed	switch	as	1,	open	switch	as	0

A

~A

~B

B

Connection when
A&~B | ~A&B

A&~B

~A&B
= A^B

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

General	Boolean	Algebras
• Operate	on	Bit	Vectors
– Operations	applied	bitwise

• All	of	the	Properties	of	Boolean	Algebra	Apply

01101001
& 01010101
01000001

01101001
| 01010101
01111101

01101001
^ 01010101
00111100

~ 01010101
1010101001000001 01111101 00111100 10101010

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Representing	&	Manipulating	Sets
• Representation

– Width	w bit	vector	represents	 subsets	of	{0,	…,	w–1}
– aj =	1	if	j	� A

• 01101001 {	0,	3,	5,	6	}
• 76543210

• 01010101 {	0,	2,	4,	6	}
• 76543210

• Operations
– &			Intersection 01000001 {	0,	6	}
– |				Union 01111101 {	0,	2,	3,	4,	5,	6	}
– ^				Symmetric	difference 00111100 {	2,	3,	4,	5	}
– ~				Complement 10101010 {	1,	3,	5,	7	}

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Bit-Level	Operations
• Operations	&,		|,		~,		^

• Examples	 (Char	data	type)
– ~0x41 ➙ 0xBE

• ~010000012 ➙ 101111102

– ~0x00 ➙ 0xFF
• ~000000002 ➙ 111111112

– 0x69 & 0x55 ➙ 0x41
• 011010012 & 010101012 ➙ 010000012

– 0x69 | 0x55 ➙ 0x7D
• 011010012 | 010101012 ➙ 011111012

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Shift	Operations
• Left	Shift:	 x << y
– Shift	bit-vector	x left	y positions

– Throw	away	extra	bits	on	left
• Fill	with	0’s	on	right

• Right	Shift:	 x >> y
– Shift	bit-vector	x right	y positions

• Throw	away	extra	bits	on	right
– Logical	shift

• Fill	with	0’s	on	left
– Arithmetic	shift

• Replicate	most	significant	bit	on	right

• Undefined	Behavior
– Shift	amount	<	0	or	≥	word	size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Adopted	from:	R.E.	Bryant,	D.R.	O’Hallaron,	G.	Kesden

Today
• Stored	program	computers	

– Components	 of	a	computer
– Von	Neumann	architecture

• Programs	and	Data
– Binary	data	representations
– Bit	operations

• Programming	 languages	(PLs)
– Syntax	and	semantics
– Dimensions	of	a	PL
– Programming	paradigms
– A	partial	history	of	PLs

Programming	Languages
• An	artificial	language	designed	 to	express	
computations	 that	can	be	performed	 by	a	machine,	
particularly	a	computer.

• Can	be	used	to	create	programs	 that	control	the	
behavior	of	a	machine,	 to	express	algorithms	
precisely,	or	as	a	mode	of	human	communication.

• e.g.,	C,	C++,	Java,	Python,	Prolog,	Haskell,	Scala,	etc..

Creating	Computer	Programs
• Each	programming	 language	provides	a	set	of	
primitive	operations.	

• Each	programming	 language	provides	mechanisms	
for	combining	primitives	to	form	more	complex,	but	
legal,	expressions.	

• Each	programming	 language	provides	mechanisms	
for	deducing	meanings	or	values	associated	with	
computations	or	expressions.	

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Aspects	of	Languages
• Primitive	constructs

– Programming language	– numbers,	strings,	simple		
operators

– English	– words

• Syntax	– which	strings	of	characters	 and	symbols	 are	
well-formed
– Programming	language		–we’ll	get	to	specifics	shortly,	but	
for example	3.2	+	3.2	is	a	valid	C	expression

– English	– “cat	dog boy”	is not	syntactically	valid,	 as	not
in	form	of	acceptable	sentence

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Aspects	of	Languages
• Static	semantics	– which	syntactically	valid	strings	
have a meaning

– English	– “I	are	big”	has	form	<noun>	<intransitive	verb>	
<noun>,	 so	syntactically	valid,	but	is	not	valid	English
because	“I”	is	singular,	“are”	is	plural

– Programming	language	– for	example,	<literal>	<operator>	
<literal>	 is	a	valid	syntactic	form,	but	2.3/’abc’	is	a	static	
semantic	error

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Aspects	of	Languages
• Semantics	– what	is	the	meaning	associated	with	a	
syntactically	correct	string	of	symbols	with	no	static	
semantic	errors

– English	– can	be	ambiguous
• “They	saw	the	man	with	the	telescope.”

– Programming languages – always	has	exactly	one
meaning
• But	meaning	(or	value)	may	not	be	what	programmer	
intended

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Where	Can	Things	Go	Wrong?
• Syntactic	errors

– Common	but	easily	caught	by	computer

• Static	semantic	errors
– Some	languages	check	carefully	before	running,	others	check	

while	interpreting	the	program
– If	not	caught,	behavior	of	program	unpredictable

• Programs	don’t	have	semantic	errors,	but	meaning	may	
not	be	what	was	intended
– Crashes	(stops	running)
– Runs	forever
– Produces	an	answer,	but	not	programmer’s intent

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Our	Goal
• Learn	the	syntax	and	semantics	of	a	programming
language

• Learn	how	to	use	those	elements	 to	translate	
“recipes”	 for	solving	a	problem	into	a	form that	the	
computer	 can	use	to	do the	work	for	us

• Computational	modes	of	thought	enable	us	to	use	a	
suite	of	methods	 to	solve	problems

Slide	credit:	E.	Grimson,	J.	Guttag and	C.	Terman

Dimensions	of	a	Programming	Language

• Low-level	vs.	High-level

– Distinction	according	 to	the	level	of	abstraction

– In	low-level	 programming	 languages	(e.g.	Assembly),	
the	set	of	instructions	used	in	computations	are	very	
simple	(nearly	at	machine	level)

– A	high-level	 programming	 language	(e.g.	Python,	C,	
Java)	has	a	much	richer	and	more	complex	set	of	
primitives.

Dimensions	of	a	Programming	Language

• General	vs.	Targeted

– Distinction	according	to	the	range	of	applications

– In	a	general	programming	language,	the	set	of	primitives	
support	a	broad	range	of	applications.

– A	targeted	programming	language aims	at	a	very	specific	set	
of	applications.
• e.g.,	MATLAB	(matrix	laboratory)	 is	a	programming	
language	specifically	designed	for	numerical	computing	
(matrix	and	vector	operations)

Dimensions	of	a	Programming	Language

• Interpreted	vs.	Compiled

– Distinction	according	to	how	the	source	code	is	executed

– In	interpreted	 languages	(e.g.	LISP),	the	source	code	is	
executed	directly	
at	runtime	(by	the	interpreter).
• Interpreter	control	the	flow	of	the	program	by	going	
through	each	one	of	the	instructions.

– In	compiled	languages	(e.g.	C),	the	source	code	first	needs	
to	be	translated	to	an	object	code	(by	the	compiler)	before	
the	execution.

Programming	Language	Paradigms
• Functional

• Treats	computation	as	the	evaluation	of	mathematical	functions	
(e.g.	Lisp,	Scheme,	Haskell,	etc.)

• Imperative
• Describes	computation	in	terms	of	statements	that	change	a	program	
state	(e.g.	FORTRAN,	BASIC,	Pascal,	C,	etc.)

• Logical	(declarative)
• Expresses	 the	logic	of	a	computation	without	describing	its	control	flow	
(e.g.	Prolog)

• Object	oriented
• Uses	"objects"	– data	structures	consisting	of	data	fields	and	methods	
together	with	their	interactions	– to	design	applications	and	computer	
programs	(e.g.	C++,	Java,	C#,	Python,	etc.)

Programming	the	ENIAC

Slide	credit:	Ras Bodik

Programming	the	ENIAC

ENIAC	program	for	external	ballistic	equations:

Slide	credit:	Ras Bodik

Programming	the	ENIAC
• Programming	done	by

– rewiring	the	 interconnections	
– to	set	up	desired	formulas,	etc.

• Problem	(what’s	the	tedious	part?)
– programming	=	rewiring
– slow,	error-prone

• Solution:	
– store	the	program	in	memory!
– birth	of	von	Neumann	paradigm

Slide	credit:	Ras Bodik

The	First	Assembler
• Assembler	 - a	computer	program	for	translating	assembly	

language	into	executable	machine	code	
– Example:	ADD R1, R2, R3 0110000100100011

• The	EDSAC	programming	system	was	based	on	a	subroutine	
library	
– commonly	used	functions	that	could	be	used	to	build	all	sorts	of	more	

complex	programs
– the	first	version,	Initial	Orders	1,	was	devised	by	David	Wheeler,	 then	a	

research	student,	in	1949

• Team	published	“The	Preparation	of	Programs	for	an			
Electronic	Digital	Computer”
– the	only	programming	textbook	then	available
– computers	today	still	use	Cambridge	model	for	subroutines	 library

Slide	credit:	Thomas	J.	Cortina

The	First	Compiler
• A	compiler	 is	a	computer	program	that	translates	a	

computer	program	written	 in	one	computer	 language	
(the	source language)	into	a	program	written	in	another	
computer	 language	(the	target language).

– Typically,	the	target	language	is	assembly	 language	
– Assembler	may	then	translate	assembly	language	into	machine	

code

• A-0	is	a	programming	 language	for	the	UNIVAC	I	or	II,	
using	three-address	 code	instructions	 for	solving	
mathematical	problems.

• A-0	was	the	first	language	for	which	a	compiler	was	
developed.

Slide	credit:	Thomas	J.	Cortina

The	First	Compiler
• A-0	was	produced	by	Grace	Hopper's	team	at	

Remington	Rand	in	1952
– Grace	Hopper	had	previously	been	a	programmer	for	the	Harvard	

Mark			machines
– One	of	U.S.’s	first	programmers
– She	found	a	moth	in	the	Mark	I,	which	was	causing	errors,	and	called	it	

a			computer	“bug”

Slide	credit:	Thomas	J.	Cortina

FORTRAN	(1957)
• First	successful	high-level	programming	language

– Code	more	readable	and	understandable	by	humans
– Developed	by	John	Bachus at	IBM
– Stands	for:	FORmula TRANslation
– Started	development	in	1954		

• A	key	goal	of	FORTRAN	was	efficiency,	 although	portability	was	also	a	
key	issue
– automatic	programming	that	would	be	as	good	as	human	programming	of	

assembly	code	
• Programs	that	took	weeks	 to	write	could	now	take	hours	
• 1961	– First	FORTRAN	programming	textbook	

– Universities	began	teaching	it	in	undergrad	programs		
• Provided	standard	exchange	of	programs	despite	different	computers
• Became	the	standard	for	scientific	applications

Slide	credit:	Thomas	J.	Cortina

FORTRAN
REAL SUM6,SUM7,SUM8,DIF6,DIF7,DIF8,SUMINF
OPEN(6,FILE='PRN’)
SUM6=.9*(1.-0.1**6)/0.9

SUM7=.9*(1.-0.1**7)/0.9
SUM8=.9*(1.-0.1**8)/0.9

******COMPUTER SUM OF INFINITE TERMS
SUMINF=0.9/(1.0-0.1)
******COMPUTE DIFFERENCES BETWEEN FINITE & INFINITE SUMS

DIF6 = SUMINF - SUM6
DIF7 = SUMINF - SUM7
DIF8 = SUMINF - SUM8

WRITE(6,*) 'INFINITE SUM = ', SUMINF
WRITE(6,*) 'SUM6 = ', SUM6, ' INFINITE SUM - SUM6 = ', DIF6
WRITE(6,*) 'SUM7 = ', SUM7, ' INFINITE SUM - SUM7 = ', DIF7

WRITE(6,*) 'SUM8 = ', SUM8, ' INFINITE SUM - SUM8 = ', DIF8
STOP

63
Slide	credit:	Thomas	J.	Cortina

COBOL	(1960)
• Stands	for:	Common	Business-Oriented	Language
• COBOL	was	initially	created	in	1959	(and	released	in	1960	as	

Cobol	60)	by	a	group	of	computer	manufacturers	and	
government	agencies

• One	goal	of	COBOL’s	design	was	for	it	to	be	readable	by	
managers,	so	the	syntax	had	very	much	of	an	English-like	
flavor.
– The	specifications	were	to	a	great	extent	inspired	by	the	FLOW-MATIC	

language	invented	by	Grace	Hopper

• Became	the	standard	for	business	applications
– Still	used	in	business	applications	today.

• 90%	of	applications	over	next	20	years	were	written	in	either	
COBOL	or	FORTRAN
– Old	programmers	came	out	of	hiding	for	Y2K

Slide	credit:	Thomas	J.	Cortina

COBOL
000100 ID DIVISION.
000200 PROGRAM-ID. ACCEPT1.
000300 DATA DIVISION.
000400 WORKING-STORAGE SECTION.
000500 01 WS-FIRST-NUMBER PIC 9(3).
000600 01 WS-SECOND-NUMBER PIC 9(3).
000700 01 WS-TOTAL PIC ZZZ9.
000800*
000900 PROCEDURE DIVISION.
001000 0000-MAINLINE.
001100 DISPLAY 'ENTER A NUMBER: ’.
001200 ACCEPT WS-FIRST-NUMBER.
001300*
001400 DISPLAY 'ANOTHER NUMBER: ’.
001500 ACCEPT WS-SECOND-NUMBER.
001600*
001700 COMPUTE WS-TOTAL = WS-FIRST-NUMBER + WS-SECOND-NUMBER.
001800 DISPLAY 'THE TOTAL IS: ', WS-TOTAL.
001900 STOP RUN.

Slide	credit:	Thomas	J.	Cortina

Living	&	Dead	Languages
• Hundreds	of	programming	 languages	popped	up	in			the	

1960s,	most	quickly	 disappeared	

• Some	dead:		
– JOVIAL,	SNOBOL,	Simula-67,	RPG,	ALGOL,	PL/1,	and	many,	many	

more		

• Some	still	kicking:	
– LISP	(1957)	
– BASIC	(1964)	
– Pascal	(1970)	
– Prolog	(1972)	
– And	of	course,	C	(1973)

Slide	credit:	Thomas	J.	Cortina

ALGOL-60	(1960)

• Created	mainly	in	Europe	by	a	committee	of	computer	scientists		
– John	Backus	and	Peter	Naur both	served	on	the	committee	which	created	it		
– Desired	an	IBM-independent	 standard		

• Stands	for:	ALGOrithmic Language			
• Primarily	intended	to	provide	a	mechanism	for	expressing	

algorithms			uniformly	regardless	of	hardware		
• The	first	report	on	Algol was	issued	in	1958,			
• The	language	itself	was	not	a	success,	but	it	was	an	influence	on			

other	successful	languages		
– A	primary	ancestor	of	Pascal	and	C.		

• It	introduced	block	structure,	compound	statements,	recursive			
procedure	calls,	nested	 if	statements,	 loops,	and	arbitrary	length			
identifiers

Slide	credit:	Thomas	J.	Cortina

LISP	(1958)
• Developed	by	John	McCarthy	at	MIT	

• Stands	for:	LISt Processing	 	
– Designed	for	symbolic	processing		
– Introduced	symbolic	computation	and	automatic	memory	
management	 	

• Used	extensively	for	Artificial	Intelligence	
applications

Slide	credit:	Thomas	J.	Cortina

BASIC	(1964)

• Created	by	John	Kemeny and	Thomas	Kurtz	at	
Dartmouth	College		

• Stands	for:	Beginner's	All-purpose	Symbolic	 Instruction	
Code	
– one	of	the	first	languages	designed	for	use	on	a	time-sharing	
system	

– one	of	the	first	languages	designed	for	beginners			

• Variants	 like	Visual	BASIC	still	used	today	by	Microsoft.

Slide	credit:	Thomas	J.	Cortina

Prolog	(1972)
• Created	by	Alain	Colmerauer and	Phillipe Roussel of	
the	University	of	Aix-Marseille	and	Robert	Kowalski	
of	the	University	of	Edinburgh			

• Stands	for:	PROgramming in	LOGic.	 		

• Prolog	is	the	leading	logical programming	 		language.	
– used	in	artificial	intelligence	programs,	computer	
linguistics,	and	theorem	proving.	

70
Slide	credit:	Thomas	J.	Cortina

Prolog
parents(william, diana, charles).
parents(henry, diana, charles).
parents(charles, elizabeth, philip).
parents(diana, frances, edward).
parents(anne, elizabeth, philip).
parents(andrew, elizabeth, philip).
parents(edwardW, elizabeth, philip).
married(diana, charles).
married(elizabeth, philip).
married(frances, edward).
married(anne, mark).
parent(C,M) <= parents(C,M,D).
parent(C,D) <= parents(C,M,D).
sibling(X,Y) <= parents(X,M,D) and parents(Y,M,D).

Slide	credit:	Thomas	J.	Cortina

C	(1973)
• Developed	 by	Ken	Thompson	and	Dennis	Ritchie	

at			AT&T	Bell	Labs	for	use	on	the	UNIX	operating	
system.		
– now	used	on	practically	every	operating	system	
– popular	language	for	writing	system	software		

• Features:	 	
– An	extremely	 simple	core	language,	with	non-essential	 		

functionality	provided	by	a	standardized	set	of	library	routines.			
– Low-level	access	to	computer	memory	 via	the	use	of	pointers.			

• C	ancestors:	C++,	C#,	Java	

72
Slide	credit:	Thomas	J.	Cortina

C++	(C	with	Classes)
• Bjarne	Stroustrup began	work	on	C	with	
Classes	 in	1979,	renamed	C++	in	1982.		
– Developed	 at	AT&T	Bell	Laboratories.	 	
– Added	features	of	Simula to	C.		
– Contained	basic	object-oriented	 features:		

• classes	(with	data	encapsulation),	derived	classes,			virtual	
functions	and	operator	overloading	

• In	1989,	release	2.0	added	more	features:	 	
– multiple	inheritance,	abstract	classes,	static	member			
functions,	and	protected	members			

• Standard	Template	Library	(STL)	official	in	1995
73

Slide	credit:	Thomas	J.	Cortina

Java
• Created	by	Patrick	Naughton and	
James	Gosling	at	Sun	Microsystems

– Originally	designed	for	small	consumer	devices		
– Original	project	code	name:	Green	
– Main	feature:	Code	is	generated	for	a	virtual	machine	that	
can	run	on	any	computer	with	an	appropriate	interpreter		

– Original	name	of	the	language:	Oak		

74
Slide	credit:	Thomas	J.	Cortina

Python
• Created	by	Guido	van	Rossum
in	the	late	1980s

• Allows	programming	 in	multiple	paradigms:	object-
oriented,	structured,	 functional

• Uses	dynamic	typing	and	garbage	collection

Slide	credit:	Thomas	J.	Cortina

Summary
• Stored	program	computers	

– Components	of	a	computer
– Von	Neumann	architecture

• Programs	and	Data
– Binary	data	representations
– Bit	operations

• Programming	 languages	(PLs)
– Syntax	and	semantics
– Dimensions	of	a	PL
– Programming	paradigms
– A	partial	history	of	PLs

Next	Week
• Introduction	to	Programming

– Basic	Concepts
– Developing	Algorithms
– Creating	Flowcharts

• The	Python	Programming	Language
– Your	first	Python	Program
– Programming	Process
– Lexical	Elements	of	a	Python	Program

The	Strange	Birth	and	Long	Life	of	
Unix

• http://spectrum.ieee.org/computing/software/the
-strange-birth-and-long-life-of-unix

Photo:	Alcatel-Lucent

