
Introduction	to	Python
and	Programming

1Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	of	Washington

BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut Erdem

1.	Python	 is	a	calculator 2.	A	variable	is	a	container

4.	A	program	is	a	recipe3.	Different	types	cannot	be	compared

2

1.	Python	is	Like	a	Calculator

3

You	Type	Expressions.
Python	Computes	Their	Values.

• 5
• 3+4
• 44/2
• 2**3
• 3*4+5*6
– If	precedence	 is	unclear,	use	parentheses

• (72	– 32)	/	9	*	5

4

An	Expression	is	Evaluated
From	the	Inside	Out

• How	many	expressions	are	in	this	Python	code?				

(72	– 32)	/	9.0	*	5

an	expression values

(72 – 32)	/	9.0 *	5
(40)	/	9.0 *	5
40 /	9.0 *	5
4.44 *	5
22.2

5

Another	Evaluation	Example

(72 – 32)	/	(9.0 *	5)
(40)	/	(9.0 *	5)
40 /	(9.0 *	5)
40 /	(45.0)
40 /	45.0
.888

6

2.	A	Variable	is	a	Container

7

Variables	Hold	Values

• Recall	variables	from	algebra:
– Let	x	=	2	…
– Let	y	=	x	…

• To	assign	a	variable,	use	“varname =	expression”
pi = 3.14
pi
var = 6*10**23
22 = x #	Error!

• Not	all	variable	names	are	permitted

No	output	from	an	
assignment	statement

8

Changing	Existing	Variables
(“re-binding”	or	“re-assigning”)

x = 2
x
y =
y
x = 5
x
Y

• “=”	in	an	assignment	is	not a	promise	of	eternal	equality
– This	is	different than	the	mathematical	meaning	of	“=”

• Evaluating	an	expression	gives	a	new	(copy	of	a)	number,	
rather	than	changing	an	existing	one

2x

9

How	an	Assignment	is	Executed

1. Evaluate	the	right-hand	side	to	a	value
2. Store	that	value	in	the	variable

x = 2
print(x)
y = x
print(y)
z = x + 1
print(z)
x = 5
print(x)
print(y)
print(z)

State	of	the	computer: Printed	output:

2
2
3
5
2
3

x:	2
y:	2
z:	3

x:	5

To	visualize	a	program’s	execution:
http://pythontutor.com 10

More	Expressions:		Conditionals
(value	is	True or	False)

22 > 4 #	condition,	or	conditional
22 < 4 #	condition,	or	conditional
22 == 4 …
x == 100 #	Assignment,	not conditional!
22 = 4 #	Error!
x >= 5
x >= 100
x >= 200
not True
not (x >= 200)
3<4 and 5<6
4<3 or 5<6
temp = 72
water_is_liquid = (temp > 32 and temp < 212)

Numeric	operators:			+,			*,			**
Boolean	operators:			not,			and,			or
Mixed	operators:			<,			>=,			==

11

More	Expressions:	 	strings
• A	string	represents	text

– 'Python’
– myString = "BBM 101-Introduction to Programming”
– "”

• Empty	string	is	not	the	same	as	an	unbound	variable
– "“	and	‘’	are	the	same

Operations:

• Length:
– len(myString)

• Concatenation:
– “Hacettepe" + “ “ + ' University’

• Containment/searching:
– ‘a' in myString
– “a" in myString

12

3.	Different	Types	cannot	be	Compared

13

anInt = 2
aString = “Hacettepe”
anInt == aString # Error

Types	of	Values

• Integers	(int):		-22,			0,			44
– Arithmetic	is	exact
– Some	funny	representations:	 	12345678901L

• Real	numbers	(float,	for	“floating	point”):		2.718,			
3.1415
– Arithmetic	is	approximate,	e.g.,		6.022*10**23
– Some	funny	representations:	 	6.022e+23

• Strings	(str):	"I love Python",			"”

• Truth	values	(bool,	for	“Boolean”):
True,			False

George	Boole
14

Operations	Behave	differently
on	Different	Types

3.0 + 4.0
3 + 4
3 + 4.0
"3" + "4“ #	Concatenation	
3 + "4" #	Error
3 + True #	Error

Moral:		Python	only	sometimes tells	you	when	you	
do	something	that	does	not	make	sense.

15

Operations	on	Different	Types

15.0 / 4.0 3.75 3.75
15 / 4 3.75 3
15.0 / 4 3.75 3.75
15 / 4.0 3.75 3.75

15.0 // 4.0 3.0
15 // 4 3
15.0 // 4 3.0
15 // 4.0 3.0

16

Before	Python	version	
3.5,	operand	used	to	
determine	the	type	of	
division.

Python	3.5 Python	2.x

/	:	Division
//:	Integer	Division

Type	Conversion

float(15) 15.0
int(15.0) 15
int(15.5) 15
int("15") 15
str(15.5) 15.5
float(15) / 4 3.75

17

A	Program	is	a	Recipe

18

Design	the	Algorithm	Before	Coding
• We	should	think	(design	the	algorithm)	 before	coding

• Algorithmic	 thinking	is	the	logic.	Also,	called	problem	
solving

• Coding	is	the	syntax

• Make	this	a	habit

• Some	students	do	not	follow	this	practice	and	they	get	
challenged	in	all	 their	courses	and	careers!

19

What	is	a	Program?

• A	program	is	a	sequence	of	instructions

• The	computer	executes	one	after	the	other,	as	if	they	had	been	
typed	to	the	interpreter

• Saving	your	work	as	a	program	is	better	than	re-typing	from	
scratch

20

x = 1
y = 2
x + y
print(x + y)
print("The sum of", x, "and", y, "is", x+y)

The		print() Statement

• The		print statement	always	prints	one	line
– The	next	print	statement	prints	below	that	one

• Write	0	or	more	expressions	after		print,	separated	by	
commas
– In	the	output,	the	values	are	separated	by	spaces

• Examples:
x = 1
y = 2
print(3.1415)
print(2.718, 1.618)
print()
print(20 + 2, 7 * 3, 4 * 5)
print("The sum of", x, "and", y, "is", x+y)

21

3.1415
2.718	1.618
22	21	20
The	sum	of	1	and	2	is	3

Exercise:	 	Convert	Temperatures
• Make	a	temperature	conversion	chart	as	the	following

• Fahrenheit	 to	Centigrade,	 for	Fahrenheit	values	of:	-40,	0,	32,	68,	98.6,	212

• C	=	(F	- 32)	× 5/9

• Output:
Fahrenheit Centigrade
-40 -40.0
0 -17.7778
32 0.0
68 20.0
98.6 37.0
212 100.0

• You	have	created	a	Python	program!

• (It	doesn’t	have	to	be	this	tedious,	and	it	won’t	be.)

22

Expressions,	Statements,	and	Programs
• An	expression evaluates	to	a	value

3 + 4
pi * r**2

• A	statement causes	an	effect
pi = 3.14159
print(pi)

• Expressions	appear	within	other	expressions	and	within	statements
(fahr – 32) * (5.0 / 9)
print(pi * r**2)

• A	statement	may	not appear	within	an	expression
3 + print(pi) #	Error!

• A	program is	made	up	of	statements
– A	program	should	do	something	or	communicate	 information 23

print() Function

24

1.	Python	 is	a	calculator 2.	A	variable	is	a	container

4.	A	program	is	a	recipe3.	Different	types	cannot	be	compared

25

Programming	Languages
• A	programming	language	is	a	“language”	to	write	programs	in,	

such	as	Python,	C,	C++,	 Java

• The	concept	of	programming	languages	are	quite	similar

• Python:

• Java:

• Python	 is	simpler!	That’s	why	we	are	learning	it	first	J

26

Evolution	of	Programming	Languages

27 • http://blog.codeeval.com/codeevalblog/2015 28

