
File	I/O

BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut Erdem

1Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	of	Washington

File	Input	and	Output

• As	a	programmer,	when	would	one	use	a	file?
• As	a	programmer,	what	does	one	do	with	a	file?

2

Files	Store	Information
When	a	Program	is	not	Running

Important	operations:

• open	a	file

• close	a	file

• read	data

• write	data

3

Files	and	Filenames
• A	file object	represents	data	on	your	disk	drive
– Can	read	from	it	and	write	to	it

• A	filename (usually	a	string)	states	where	to	find	
the	data	on	your	disk	drive
– Can	be	used	to	find/create	a	file
– Examples:

• Linux/Mac:"/home/rea/class/140/lectures/file_io.pptx"
• Windows:"C:\Users\rea\My Documents\cute_dog.jpg"
• Linux/Mac:	"homework3/images/Husky.png"
• "Husky.png"

4

Two	Types	of	Filenames
• An Absolute filename	gives	a	specific	location	on	disk:	

"/home/rea/class/140/14wi/lectures/file_io.pptx" or	
"C:\Users\rea\My Documents\homework3\images\Husky.png"

– Starts	with	“/”	(Unix)	or	“C:\”	(Windows)
– Warning:		code	will	fail	to	find	the	file	if	you	move/rename	files	

or	run	your	program	on	a	different	computer

• A Relative filename	gives	a	location	relative	to	the	current	
working	directory:
"lectures/file_io.pptx" or	" images\Husky.png"
– Warning:		code	will	fail	to	find	the	file	unless	you	run	your	

program	from	a	directory	that	contains	the	given	contents

• A	relative	filename	is	usually	a	better	choice

5

Examples
Linux/Mac:	These	could all	refer	to	the	same	file:
"/home/rea/class/140/homework3/images/Husky.png"
"homework3/images/Husky.png"
"images/Husky.png"
"Husky.png"

Windows:		These	could all	refer	to	the	same	file:
"C:\Users\rea\My Documents\class\140\homework3\images\Husky.png"
"homework3\images\Husky.png"
"images\Husky.png"
"Husky.png"

6

“Current	Working	Directory”	in	Python

The	directory	from	which	you	ran	Python

To	determine	it	from	a	Python	program:
>>> import os # "os" stands for "operating system"
>>> os.getcwd()
'/Users/johndoe/Documents'

Can	be	the	source	of	confusion:		where	are	my	files?

7

Reading a	File	in	Python
Open takes a filename and returns a file.
This fails if the file cannot be found & opened.
myfile = open("datafile.dat")

Approach 1:
for line_of_text in myfile:
… process line_of_text

Approach 2:
all_data_as_a_big_string = myfile.read()

myfile.close() # close the file when done reading

Assumption:	file	is	a	sequence	of	lines
Where	does	Python	expect	to	find	this	file	(note	the	relative	pathname)?

8

Reading a	File	Example
Count the number of words in a text file
in_file = "thesis.txt"
myfile = open(in_file)
num_words = 0
for line_of_text in myfile:

word_list = line_of_text.split()
num_words += len(word_list)

myfile.close()
print("Total words in file: ", num_words)

9

Reading	a	File	Multiple	Times
You	can	iterate	over	a	list as	many	times	as	
you	like:
mylist = [3, 1, 4, 1, 5, 9]
for elt in mylist:
… process elt
for elt in mylist:
… process elt

Iterating	over	a	file uses	it	up:
myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

for line_of_text in myfile:
… process line_of_text

How	to	read	a	filemultiple	times?

Solution	1:		Read	into	a	list,	then	iterate	over	it
myfile = open("datafile.dat")
mylines = []
for line_of_text in myfile:
mylines.append(line_of_text)

… use mylines

Solution	2: Re-create	the	file	object	
(slower,	but	a	better	choice	if	the	file	does	not	fit	
in	memory)
myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

10

This	loop	body	will	
never	be	executed!

Writing to	a	File	in	Python
# Replaces	any	existing	file	of	this	name
myfile = open("output.dat", "w")

# Just	like	printing	output
myfile.write("a bunch of data")
myfile.write("a line of text\n")

myfile.write(4)
myfile.write(str(4))

myfile.close()

open	for	Writing
(no	argument,	or	
"r",	for	Reading)

“\n”	means	
end	of	line	
(Newline)

Wrong;	results	in:
TypeError: expected a character buffer object

Right.		Argument	
must	be	a	string

11

close	when	done	
with	all	writing

File	Access	Modes

12

Direct	(Random)	Access	Files
• Allows	direct	access	to	any	piece	of	data	in	a	file	without	

reading	the	data	that	comes	before	it.

13

>>> f = open('workfile', 'rb+')
>>> f.write(b'0123456789abcdef')
16

>>> f.seek(5) # Go to the 6th byte in the file 5
>>> f.read(1)
b'5'

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13

>>> f.read(1)
b'd'

The second argument	of	fseek ()	is	optional	and	
defaults	to 0 (absolute	file	positioning);	other	
values	are 1 (seek	relative	to	the	current	
position)	and 2 (seek	relative	to	the	file's	end).

