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Sets
• Mathematical	set:		a	collection	of	values,	without	duplicates	

or	order

• Order	does	not	matter
{	1,	2,	3	}	==	{	3,	2,	1	}

• No	duplicates
{	3,	1,	4,	1,	5	}	==	{	5,	4,	3,	1	}

• For	every	data	structure,	ask:
– How	to	create
– How	to	query	(look	up)	and	perform	other	operations

• (Can	result	in	a	new	set,	or	in	some	other	datatype)
– How	to	modify

Answer:		http://docs.python.org/2/library/stdtypes.html#set

3

2

1

1

4

3

5

2



Creating	a	Set

• Construct	from	a	list:

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([])

Python	always	prints using	this	syntax	above
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Set	Operations
odd = set([ 1, 3, 5 ])
prime = set([ 2, 3, 5 ])

• membership	∈ Python:	in 4 in prime ⇒ False
• union	∪ Python:	| odd | prime ⇒ {	1,	2,	3,	5	}
• intersection		∩ Python:	& odd & prime ⇒ {	3,	5	}
• difference	 \ or	- Python:	- odd – prime ⇒ {	1	}

Think	in	terms	of	set	operations,
not in	terms	of	iteration	and	element	operations

– Shorter,	clearer,	 less	error-prone,	 faster

Although	we	can	do	iteration	over	sets:
# iterates over items in arbitrary order
for item in myset:

…
But	we	cannot index	into	a	set	to	access	a	specific	element. 4



Modifying	a	Set
• Add one	element	 to	a	set:

myset.add(newelt)
myset = myset | set([newelt])

• Remove one	element	 from	a	set:
myset.remove(elt)  #	elt must	be	in	myset or	raises	err
myset.discard(elt) #	never	errs

What	would	this	do?
myset = myset – set([newelt])

• Choose	and	remove	some	element	 from	a	set:
myset.pop()
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Practice	with	Sets
z = set([5,6,7,8])

y = set([1,2,3,"foo",1,5])
k = z & y

j = z | y
m = y – z 

z.add(9)
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z: {8, 9, 5, 6, 7}
y: {1, 2, 3, 5, 'foo'}
k: {5}
j: {1, 2, 3, 5, 6, 7, 8, 'foo'}
m: {1, 2, 3, 'foo'}



List	vs.	Set	Operations	(1)
Find	the	common	elements	in	both	list1	and	list2:

out1 = []
for i in list2:

if i in list1:
out1 .append(i)

OR

out1 = [i for i in list2 if i in list1]

Find	the	common	elements	in	both	set1	and	set2:

set1 & set2

Much	shorter,	 clearer,	easier	to	write!
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List	vs.	Set	Operations	(2)
Find	the	elements	 in	either list1	or	list2	(or	both)	(without	duplicates):

out2 = list(list1) # make a copy
for i in list2:

if i not in list1: # don’t append elements 
out2.append(i) # already in out2

OR

out2 = list1+list2
for i in out1: # out1 (from previous example), 

out2.remove(i) # common elements in both lists
# Remove common elements

Find	the	elements	 in	either	 set1	or	set2	(or	both):

set1 | set2
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List	vs.	Set	operations	(3)

Find	the	elements	 in	either	list	but	not in	both:
out3 = []
for i in list1+list2:

if i not in list1 or i not in list2:
out3.append(i)

Find	the	elements	 in	either	set	but	not	in	both:

set1 ^ set2 #	symmetric	difference
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Not	Every	Value	may	be	Placed	in	a	Set	- 1

• Set	elements	must	be	immutable	values
– int,	float,	bool,	string,	tuple
– not:		list,	set,	dictionary

• Goal:		only	set	operations	 change	the	set
– after	“myset.add(x)”,	 	x in myset⇒ True
– y in myset always	evaluates	to	the	same	value
Both	conditions	should	hold	until	myset itself	is	changed
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Not	Every	Value	may	be	Placed	in	a	Set	- 2

• Mutable	elements	can	violate	these	goals

list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]

myset = { list1 } ⇐ Hypothetical;	
list1 in myset ⇒ True	 actually	illegal	in	Python
list3 in myset ⇒ True	
list2.append("c") ⇐ not	modifying	myset “directly”
list1 in myset ⇒ ??? modifying	myset “indirectly”	would
list3 in myset ⇒ ??? lead	to	different	 results
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