
Sets

BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut Erdem

1Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	of	Washington

Sets
• Mathematical	set:		a	collection	of	values,	without	duplicates	

or	order

• Order	does	not	matter
{	1,	2,	3	}	==	{	3,	2,	1	}

• No	duplicates
{	3,	1,	4,	1,	5	}	==	{	5,	4,	3,	1	}

• For	every	data	structure,	ask:
– How	to	create
– How	to	query	(look	up)	and	perform	other	operations

• (Can	result	in	a	new	set,	or	in	some	other	datatype)
– How	to	modify

Answer:		http://docs.python.org/2/library/stdtypes.html#set

3

2

1

1

4

3

5

2

Creating	a	Set

• Construct	from	a	list:

odd = set([1, 3, 5])

prime = set([2, 3, 5])

empty = set([])

Python	always	prints using	this	syntax	above

3

Set	Operations
odd = set([1, 3, 5])
prime = set([2, 3, 5])

• membership	∈ Python:	in 4 in prime ⇒ False
• union	∪ Python:	| odd | prime ⇒ {	1,	2,	3,	5	}
• intersection		∩ Python:	& odd & prime ⇒ {	3,	5	}
• difference	 \ or	- Python:	- odd – prime ⇒ {	1	}

Think	in	terms	of	set	operations,
not in	terms	of	iteration	and	element	operations

– Shorter,	clearer,	 less	error-prone,	 faster

Although	we	can	do	iteration	over	sets:
iterates over items in arbitrary order
for item in myset:

…
But	we	cannot index	into	a	set	to	access	a	specific	element. 4

Modifying	a	Set
• Add one	element	 to	a	set:

myset.add(newelt)
myset = myset | set([newelt])

• Remove one	element	 from	a	set:
myset.remove(elt) #	elt must	be	in	myset or	raises	err
myset.discard(elt) #	never	errs

What	would	this	do?
myset = myset – set([newelt])

• Choose	and	remove	some	element	 from	a	set:
myset.pop()

5

Practice	with	Sets
z = set([5,6,7,8])

y = set([1,2,3,"foo",1,5])
k = z & y

j = z | y
m = y – z

z.add(9)

6

z: {8, 9, 5, 6, 7}
y: {1, 2, 3, 5, 'foo'}
k: {5}
j: {1, 2, 3, 5, 6, 7, 8, 'foo'}
m: {1, 2, 3, 'foo'}

List	vs.	Set	Operations	(1)
Find	the	common	elements	in	both	list1	and	list2:

out1 = []
for i in list2:

if i in list1:
out1 .append(i)

OR

out1 = [i for i in list2 if i in list1]

Find	the	common	elements	in	both	set1	and	set2:

set1 & set2

Much	shorter,	 clearer,	easier	to	write!
7

List	vs.	Set	Operations	(2)
Find	the	elements	 in	either list1	or	list2	(or	both)	(without	duplicates):

out2 = list(list1) # make a copy
for i in list2:

if i not in list1: # don’t append elements
out2.append(i) # already in out2

OR

out2 = list1+list2
for i in out1: # out1 (from previous example),

out2.remove(i) # common elements in both lists
Remove common elements

Find	the	elements	 in	either	 set1	or	set2	(or	both):

set1 | set2

8

List	vs.	Set	operations	(3)

Find	the	elements	 in	either	list	but	not in	both:
out3 = []
for i in list1+list2:

if i not in list1 or i not in list2:
out3.append(i)

Find	the	elements	 in	either	set	but	not	in	both:

set1 ^ set2 #	symmetric	difference

9

Not	Every	Value	may	be	Placed	in	a	Set	- 1

• Set	elements	must	be	immutable	values
– int,	float,	bool,	string,	tuple
– not:		list,	set,	dictionary

• Goal:		only	set	operations	 change	the	set
– after	“myset.add(x)”,	 	x in myset⇒ True
– y in myset always	evaluates	to	the	same	value
Both	conditions	should	hold	until	myset itself	is	changed

10

Not	Every	Value	may	be	Placed	in	a	Set	- 2

• Mutable	elements	can	violate	these	goals

list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]

myset = { list1 } ⇐ Hypothetical;	
list1 in myset ⇒ True	 actually	illegal	in	Python
list3 in myset ⇒ True	
list2.append("c") ⇐ not	modifying	myset “directly”
list1 in myset ⇒ ??? modifying	myset “indirectly”	would
list3 in myset ⇒ ??? lead	to	different	 results

11

