
Debugging

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut	Erdem

1Slides	 based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	 of	Washington

The	Problem

What	you	want
your	program	to	do

What	your	program	does

Not	the	same!

2

There	is	a	bug!

What	is	Debugging?

• Grace	Hopper	was	one	of	U.S.’s	first	programmers.
• She	found	a	moth	in	the	Mark	I	computer,	which	was	
causing	errors,	and	called	it	a	computer	“bug”

• Thus,	the	word	debugging	is	coined	J

3

Debugging	Tools

• Python	error	message
• assert
• print
• Python	interpreter
• Python	Tutor	(http://pythontutor.com)
• Python	debugger
• Best	tool:		

4

Two	Key	Ideas
1. The	scientific	method
2. Divide	and	conquer

If	you	master	those,	you	will	find	debugging	
easy,	and	possibly	enjoyable	;-)	

5

The	Scientific	Method

1. Create	a	hypothesis
2. Design	an	experiment	to	test	that	hypothesis

– Ensure	that	it	yields	insight
3. Understand	the	result	of	your	experiment

– If	you	don’t	understand,	then	possibly	suspend	your	main	line	of	
work	to	understand	that

Tips:
• Be	systematic

– Never	do	anything	if	you	don't	have	a	reason
– Don’t	just	flail

• Random	guessing	 is	likely	to	dig	you	into	a	deeper	hole

• Don’t	make	assumptions	(verify	them) 6

Example	Experiments

1. An	alternate	implementation	of	a	function
– Run	all	your	test	cases	afterward

2. A	new,	simpler	test	case
– Examples:		smaller	input,	or	test	a	function	in	
isolation

– Can	help	you	understand	the	reason	for	a	failure

7

Your	Scientific	Notebook
Record	everything	you	do
• Specific	inputs	and	outputs	(both	expected	and	actual)
• Specific	versions	of	the	program

– If	you	get	stuck,	you	can	return	to	something	that	works
– You	can	write	multiple	implementations	of	a	function

• What	you	have	already	tried
• What	you	are	in	the	middle	of	doing	now

– This	may	look	like	a	stack!
• What	you	are	sure	of,	and	why

Your	notebook	also	helps	if	you	need	to	get	help	or	reproduce	your	
results.

8

Read	the	Error	Message
Traceback (most recent call last):
File "nx_error.py", line 41, in <module>
print(friends_of_friends(rj, myval))

File "nx_error.py", line 30, in friends_of_friends
f = friends(graph, user)

File "nx_error.py", line 25, in friends
return set(graph.neighbors(user))#

File "/Library/Frameworks/…/graph.py", line 978, in neighbors
return list(self.adj[n])

TypeError: unhashable type: 'list'

List	of	all	exceptions	(errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions
Two	other	resources,	with	more	details	about	a	few	of	the	errors:
http://inventwithpython.com/appendixd.html
http://www.cs.arizona.edu/people/mccann/errors-python

Call	stack	or	traceback

First	function	 that	was	
called	(<module>
means	the	interpreter)

Second	function	
that	was	called

Last	function	 that	
was	called	(this	one	
suffered	an	error)

The	error	message:
daunting	but	useful.
You	need	to	understand:
• the	literal	meaning	of	

the	error
• the	underlying	

problems	certain	
errors	tend	to	suggest

9

Common	Error	Types
• AssertionError

– Raised	when	an	assert	statement	fails.
• IndexError

– Raised	when	a	sequence	subscript	 is	out	of	range.
• KeyError

– Raised	when	a	mapping	(dictionary)	key	 is	not	found	in	the	set	of	existing	keys.
• KeyboardInterrupt

– Raised	when	the	user	hits	the	interrupt	key	(normally	Control-C	or	Delete).	
• NameError

– Raised	when	a	local	or	global	name	is	not	found.	
• SyntaxError

– Raised	when	the	parser	encounters	a	syntax	error.	
• IndentationError

– Base	class	for	syntax	errors	related	to	incorrect	indentation.
• TypeError

– Raised	when	an	operation	or	function	is	applied	to	an	object	of	inappropriate	type.
10

Divide	and	Conquer
• Where	is	the	defect	(or	“bug”)?
• Your	goal	is	to	find	the	one	place	that	it	is
• Finding	a	defect	is	often	harder	than	fixing	it

• Initially,	the	defect	might	be	anywhere	in	your	program
– It	is	impractical	to	find	it	if	you	have	to	look	everywhere

• Idea:		bit	by	bit	reduce	the	scope	of	your	search
• Eventually,	the	defect	is	localized	to	a	few	lines	or	one	line

– Then	you	can	understand	and	fix	it

• 4 ways	to	divide	and	conquer:
– In	the	program	code
– In	test	cases
– During	the	program	execution
– During	the	development	history

11

Divide	and	Conquer	in	the	Program	Code

• Localize	the	defect	to	part	of	the	program
– e.g.,	one	function,	 or	one	part	of	a	function

• Code	that	isn’t	executed	cannot	contain	the	defect

3	approaches:
• Test	one	function	at	a	time
• Add	assertions	or	print	statements

– The	defect	is	executed	before	 the	failing	assertion	 (and	maybe	after	a	
succeeding	assertion)

• Split	complex	expressions	into	simpler	ones
Example:	Failure	in

result = set({graph.neighbors(user)})
Change	it	to

nbors = graph.neighbors(user)
nbors_set = {nbors}
result = set(nbors_set)

The	error	occurs	on	the	“nbors_set =	{nbors}"	line
12

Divide	and	Conquer	in	Test	Cases

• Your	program	fails	when	run	on	some	large	input
– It’s	hard	to	comprehend	the	error	message
– The	log	of	print	statement	output	is	overwhelming

• Try	a	smaller	input
– Choose	an	input	with	some	but	not	all	characteristics	of	
the	large	input

– Example:		duplicates,	zeroes	in	data,	…

13

Divide	and	Conquer	in	Execution	Time
via	Print	(or	“logging”)	Statements

• A	sequence	of		print statements	is	a	record	of	the	
execution	of	your	program

• The		print statements	let	you	see	and	search	
multiple	moments	in	time

• Print	statements	are	a	useful	technique,	in	moderation
• Be	disciplined
– Too	much	output	is	overwhelming	rather	than	informative
– Remember	the	scientific	method:		have	a	reason	(a	
hypothesis	to	be	tested)	for	each	print	statement

– Don’t	only use	print	statements

14

Divide	and	Conquer
in	Development	History

• The	code	used	to	work	(for	some	test	case)
• The	code	now	fails
• The	defect	is	related	to	some	line	you	changed

• This	is	useful	only	if	you	kept	a	version	of	the	code	that	
worked	(use	good	names!)

• This	is	most	useful	if	you	have	made	few	changes
• Moral:		test	often!

– Fewer	lines	to	compare
– You	remember	what	you	were	thinking/doing	recently

15

A	Metaphor	About	Debugging
If	your	code	doesn’t	work	as	
expected,	then	by	definition	you	
don’t	understand	what	is	going	on.

• You’re	lost	in	the	woods.
• You’re	behind	enemy	lines.		
• All	bets	are	off.		
• Don’t	trust	anyone	or	anything.

Don’t	press	on	into	unexplored	
territory	-- go	back	the	way	you	
came!
(and	leave	breadcrumbs!)

You’re	trying	to	“advance	the	front	lines,”	not	“trailblaze”
16

Time-Saving	Trick:	
Make	Sure	You	are	Debugging	the	Right	Problem

• The	game	is	to	go	from	“working	to	working”
• When	something	doesn’t	work,	STOP!
– It’s	wild	out	there!

• FIRST:	Go	back	to	the	last	situation	that	worked	properly.
– Rollback	your	recent	changes	and	verify	that	everything	still	works	as	

expected.	
– Don’t	make	assumptions	– by	definition,	you	don’t	understand	the	

code	when	something	goes	wrong,	so	you	can’t	trust	your	
assumptions.

– You	may	find	that	even	what	previously	worked	now	doesn’t
– Perhaps	you	forgot	to	consider	some	“innocent”	or	unintentional	

change,	and	now	even	tested	code	is	broken

17

A	Bad	Timeline

• A	works,	so	celebrate	a	little
• Now	try	B
• B	doesn’t	work
• Change	B	and	try	again
• Change	B	and	try	again	
• Change	B	and	try	again
…

18

A	Better	Timeline
• A	works,	so	celebrate	a	little
• Now	try	B
• B	doesn’t	work
• Rollback	to	A
• Does	A	still	work?		

– Yes:	Find	A’	that	is	somewhere	between	A	and	B
– No:	You	have	unintentionally	changed	something	else,	and	there’s	no	

point	futzing	with	B	at	all!

These	“innocent”	and	unnoticed	 changes	happen	more	than	you	would	 think!		
• You	add	a	comment,	and	the	indentation	changes.		
• You	add	a	print	statement,	and	a	function	 is	evaluated	twice.
• You	move	a	file,	and	the	wrong	one	 is	being	 read
• You	are	on	a	different	computer,	and	the	library	is	a	different	version

19

Once	You	are	on	Solid	Ground	You	can	
Set	Out	Again

• Once	you	have	something	that	works	and	something	
that	doesn’t	work,	it	is	only	a	matter	of	time

• You	just	need	to	incrementally	change	the	working	
code	into	the	non-working	code,	and	the	problem	will	
reveal	itself.

• Variation:	Perhaps	your	code	works	with	one	input,	but	
fails	with	another.		Incrementally	change	the	good	
input	into	the	bad	input	to	expose	the	problem.

20

Simple	Debugging	Tools

print
– shows	what	is	happening	whether	there	is	a	problem	or	
not

– does	not	stop	execution
assert
– Raises	an	exception	if	some	condition	is	not	met
– Does	nothing	if	everything	works
– Example:			assert len(rj.edges()) == 16
– Use	this	liberally!		Not	just	for	debugging!	

21

