
Exception	Handling

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut	Erdem

1

What	is	an	Exception?
• An	exception	is	an	abnormal	condition	(and	thus	rare)	that	

arises	in	a	code	sequence	at	runtime.	For	instance:
– Dividing	a	number	by	zero
– Accessing	an	element	that	is	out	of	bounds	of	an	array
– Attempting	to	open	a	file	which	does	not	exist

• When	an	exceptional	condition	arises,	an	object	representing	
that	exception	is	created	and	thrown	in	the	code	that	caused	
the	error

• An	exception	can	be	caught	to	handle	it	or	pass	it	on

• Exceptions	can	be	generated	by	the	run-time	system,	or	they	
can	be	manually	generated	by	your	code

2

What	is	an	Exception?
test = [1,2,3]
test[3]

3

IndexError: list index out of range

What	is	an	Exception?
successFailureRatio = numSuccesses/numFailures

print('The success/failure ratio is',
successFailureRatio)

print('Now here')

4

ZeroDivisionError: integer division or
modulo by zero

What	is	an	Exception?
val = int(input('Enter an integer: '))

print('The square of the number you entered is', val**2)

> Enter an integer: asd

5

ValueError: invalid literal for int() with base 10:
'asd'

Handling	Exceptions
• Exceptionmechanism gives the programmer a	chance to do	

something against an	abnormal condition.

• Exception handling is	performing an	action in	response to an	
exception.

• This actionmay be:
– Exiting the program
– Retrying the actionwith or without alternative data
– Displayingan	errormessage andwarninguser to do	something
–

6

Handling	Exceptions
try:

successFailureRatio = numSuccesses/numFailures

print('The success/failure ratio is', successFailureRatio)

Except ZeroDivisionError:

print('No failures, so the success/failure is undefined.')

print('Now here')

7

• Upon	entering	the	try block,	the	interpreter	attempts	to	evaluate	the	
expression	numSuccesses/numFailures.	

• If	expression	evaluation	is	successful,	the	assignment	is	done	and	the	result	is	
printed.	

• If,	however,	a	ZeroDivisionError exception	is	raised,	the	print	statement	in	
the	except block	is	executed.

while True:
val = input('Enter an integer: ')
try:

val = int(val)
print('The square of the number you entered is', val**2)
break #to exit the while loop

except ValueError:
print(val, 'is not an integer')

8

Handling	Exceptions

Checks	for	whether	ValueError exception	is	raised	or	not

Keywords	of	Exception	Handling

• There are five keywords in	Python to deal with
exceptions:	try,	except,	else,	raise and finally.

• try:	Creates a	block to monitor if any exception
occurs.

• except:	Follows the try block and catches any
exception which is	thrownwithin it.

9

Are	There	Many	Exceptions	in	
Python?

• Yes,	some	of	them	are…
– Exception
– ArithmeticError
– OverflowError
– ZeroDivisonError
– EOFError
– NameError
– IOError
– SyntaxError

10

List	of	all	exceptions	(errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions

Multiple	except	Statements

11

• It is	possible that more than one exception can	be	thrown in	a	
code block.
– We	can	use	multiple	except clauses

• When	an	exception	is	thrown,	each	except statement	is	
inspected	in	order,	and	the	first	one	whose	type	matches that	
of	the	exception	is	executed.	
– Type matchingmeans that the exception thrownmust be	an	object of	

the same class or a	sub-class of	the declared class in	the except
statement

• After	one	except statement	executes,	the	others	are	
bypassed.

Multiple	except	Statements

12

try:

You	do	your	operations	here;	
except Exception-1:

Execute	this	block.	
except Exception-2:

Execute	this	block.	
except (Exception-3[, Exception-4[,...ExceptionN]]]):

If	there	is	any	exception	from	the	given	exception	list,	
then	execute	this	block.

except (ValueError, TypeError):
…

The	except	block	will	be	entered	if	any	of	the	listed	
exceptions is	raised	within	the	try	block

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

13

You	can't	divide	by	zero!

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except Exception:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

14

Exception	occured and	handled!

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

15

SyntaxError: default 'except:' must be last

except-else	Statements

16

try:
You do your operations here

except:
Execute this block.

else:
If there is no exception then execute this block.

try:
f = open(arg, 'r')

except IOError:
print('cannot open', arg)

else:
print(arg, 'has', len(f.readlines()), 'lines')

finally	Statement

17

• finally creates a	block of	code that will be	executed after
a	try/except block has	completedand before the code
followingthe try/except block

• finally block is	executed whether or not	exception is	thrown

• finally block is	executed whether or not	exception is	caught

• It is	used to gurantee that a	code blockwill be	executed in	any
condition.	

finally	Statement

18

You	can	use	it	to	clean	up	files,	database	connections,	etc.

try:
You do your operations here

except:
Execute this block.

finally:
This block will definitely be executed.

try:
file = open('out.txt', 'w')
do something…

finally:
file.close()
os.path.remove('out.txt')

Nested	try	Blocks
• When an	exception occurs inside	a	try block;

– If thetry block does not	have a	matchingexcept,	then the outertry
statement’s except clauses are inspected for a	match

– If a	matchingexcept is	found,	that except block is	executed
– If nomatchingexcept exists,	execution flowcontinues to find a	

matchingexcept by inspecting the outer try statements
– If a	matchingexcept cannot be	found at	all,	the exceptionwill be	

caught by Python’s exception handler.	

• Execution flow never returns to the line that exception was
thrown.	This means,	an	exception is	caught and except block
is	executed,	the flow will continuewith the lines followingthis
except block

19

Let’s clarify it	on	various scenarios

20

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Information: Exception1	and	Exception2	are	
subclasses	of	Exception3

Question:	Which	statements	are	executed	if
1- statement1	throws	Exception1
2- statement2	throws	Exception1
3- statement2	throws	Exception3
4- statement2	throws	Exception1	and	
statement3	throws Exception2

Scenario:	statement1	throws Exception1

21

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	
block	are	inspected	for	a	
matching except statement.	
Exception3	is	super	class	of	
Exception1,	so	it	matches.

Step3:	statement8	is	executed,	exception	is	handled	and	execution	
flow	will	continue	bypassing	 the	following except clauses

Step4:	statement9	is	executed

Scenario:	statement2	throws Exception1

22

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	block	are	
inspected	for	a	matching except statement.	First	
clause	catches	the	exception

Step3:	statement3	is	executed,	exception	is	
handled

Step4:	execution	flow	will	continue	bypassing	 the	
following except clauses.	statement5	is	executed.

Step5:	Assuming	no	exception	is	thrown	by	
statement5,	program	continues	with	statement7	
and	statement9.

Scenario:	statement2	throws Exception3

23

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception3
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	block	are	
inspected	for	a	matching except statement.	
None	of	these except clauses match	Exception3

Step3:	except clauses of	the	outer	try	statement	
are	inspected	for	a	matching except .	Exception3	is	
catched	and	statement8	is	executed

Step4:	statement9	is	executed

Scenario:	statement2	throws Exception1	
and statement3	throws Exception2

24

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	Exception	is	catched	and	statement3	is	
executed.

Step3:	statement3	throws	a	new	exception

Step5:	statement9	is	executed

Exception2

Step4:	Except clauses of	the	outer	
try	statement	are	inspected	for	a	
matching except.	Exception2	is	
catched	and	statement8	is	
executed

raise Statement

• You	can	raise	exceptions	by	using	the	raise
statement.

• The	syntax	is	as	follows:	
raise exceptionName(arguments)

25

raise Statement
def getRatios(vect1, vect2):

""" Assumes: vect1 and vect2 are equal length lists of numbers
Returns: a list containing the meaningful values of vect1[i]/vect2[i]

"""
ratios = []
for index in range(len(vect1)):

try:
ratios.append(vect1[index]/vect2[index])

except ZeroDivisionError:
ratios.append(float('nan')) #nan = Not a Number

except:
raise ValueError(’getRatios called with bad arguments’)

return ratios

try:
print(getRatios([1.0, 2.0, 7.0, 6.0], [1.0,2.0,0.0,3.0]))
print(getRatios([], []))
print(getRatios([1.0, 2.0], [3.0]))

except ValueError as msg:
print(msg) 26

[1.0, 1.0, nan, 2.0]
[]
getRatios called with bad arguments

raise Statement
• Avoid	raising	a	generic	Exception! To	catch	it,	you'll	have	

to	catch	all	other	more	specific	exceptions	that	subclass	it..	

27

def demo_bad_catch():
try:

raise ValueError('a hidden bug, do not catch this')
raise Exception('This is the exception you expect to handle')

except Exception as error:
print('caught this error: ' + repr(error))

>>> demo_bad_catch()
caught this error: ValueError('a hidden bug, do not catch this',)

raise Statement

• and	more	specific	catches	won't	catch	the	general	exception:..	

28

def demo_no_catch():
try:

raise Exception('general exceptions not caught by specific handling')
except ValueError as e:

print('we will not catch e')

>>> demo_no_catch()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in demo_no_catch

Exception: general exceptions not caught by specific handling

Custom	Exceptions

29

• Users	can	define	their	own	exception	by	creating	a	
new	class	in	Python.

• This	exception	class	has	to	be	derived,	either	directly	
or	indirectly,	from	Exception	class.	

• Most	of	the	built-in	exceptions	are	also	derived	form	
this	class.

Custom	Exceptions
class ValueTooSmallError(Exception):

"""Raised when the input value is too small"""
pass

class ValueTooLargeError(Exception):
"""Raised when the input value is too large"""
pass

number = 10 # you need to guess this number

while True:
try:

i_num = int(input("Enter a number: "))
if i_num < number:

raise ValueTooSmallError
elif i_num > number:

raise ValueTooLargeError
break

except ValueTooSmallError:
print("This value is too small, try again!")

except ValueTooLargeError:
print("This value is too large, try again!")

print("Congratulations! You guessed it correctly.") 30

