
Testing

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut	Erdem

1Slides	 based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	 of	Washington

Testing

• Programming	to	analyze	data	is	powerful
• It	is	useless	if	the	results	are	not	correct
• Correctness	is	far	more	important	than	speed

2

Famous	Examples
• Ariane 5	rocket
– On	June	4,	1996,	the	maiden	flight	
of	the	European	Ariane	5	launcher	
crashed	about	40	seconds	after	takeoff.

– Media	reports	indicated	that	the	amount	lost	was	half	
a	billion	dollars

– The	explosion	was	the	result	of	a	software	error

• Therac-25	radiation	therapy	machine
– In	1985	a	Canadian-built	radiation-treatment	device	
began	blasting	holes	through	patients'	bodies.

3

Testing	does	not	Prove Correctness

• Edsger Dijkstra:	“Program	testing	can	be	used	
to	show	the	presence	of	bugs,	but	never	to	
show	their	absence!”

4

Testing	=	Double-Checking	Results
• How	do	you	know	your	program	is	right?
– Compare	its	output	to	a	correct	output

• How	do	you	know	a	correct	output?
– Real	data	is	big
– You	wrote	a	computer	program	because	it	is	not	
convenient	to	compute	it	by	hand

• Use	small	inputs	so	you	can	compute	by	hand

• Example:		standard	deviation
– What	are	good	tests	for	std_dev?

5

Testing	≠	Debugging

• Testing:		Determining	whether your	program	is	
correct
– Doesn’t	say	where or	how your	program	is	incorrect

• Debugging:		Locating	the	specific	defect	in	your	
program,	and	fixing	it
2	key	ideas:
– divide	and	conquer
– the	scientific	method

6

What	is	a	Test?
• A	test	consists	of:

– an	input (sometimes	called	“test	data”)
– an	oracle (a	predicate	(boolean expression)	of	the	output)

• Example	test	for	sum:
– input:		[1,	2,	3]
– oracle:		result	is	6
– write	the	test	as:			sum([1, 2, 3]) == 6

• Example	test	for	sqrt:
– input:		3.14
– oracle:		result	is	within	0.00001	of	1.772
– ways	to	write	the	test:
• sqrt(3.14) – 1.772 < 0.00001 and sqrt(3.14) – 1.772 > -0.00001
• -0.00001 < sqrt(3.14) – 1.772 < 0.00001
• math.abs(sqrt(3.14) – 1.772) < 0.00001

7

Test	Results

• The	test	passes if	the	boolean	expression	evaluates	
to	True

• The	test	fails if	the	boolean	expression	evaluates	to	
False

• Use	the	assert statement:
– assert sum([1, 2, 3]) == 6
– assert True does	nothing
– assert False crashes	the	program	and	prints	a	
message

8

Where	to	Write	Test	Cases
• At	the	top	level:		is	run	every	time	you	load	your	program

def hypotenuse(a, b):
…

assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

• In	a	test	function:		is	run	when	you	invoke	the	function	
def hypotenuse(a, b):
…

def test_hypotenuse():
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

9

Assertions	are	not	Just	for	Test	Cases

• Use	assertions	throughout	your	code

• Documents	what	you	think	is	true	about	your	
algorithm

• Lets	you	know	immediately	when	something	goes	
wrong
– The	longer	between	a	code	mistake	and	the	programmer	
noticing,	the	harder	it	is	to	debug	

10

Assertions	Make	Debugging	Easier
• Common,	but	unfortunate,	course	of	events:

– Code	contains	a	mistake	(incorrect	assumption	or	algorithm)
– Intermediate	value	(e.g.,	result	of	a	function	call)	is	incorrect
– That	value	is	used	in	other	computations,	or	copied	into	other	

variables
– Eventually,	the	user	notices	that	the	overall	program	produces	a	

wrong	result
– Where	is	the	mistake	in	the	program?		It	could	be	anywhere.

• Suppose	you	had	10	assertions	evenly	distributed	in	your	
code
– When	one	fails,	you	can	localize	the	mistake	to	1/10	of	your	

code	(the	part	between	the	last	assertion	that	passes	and	the	
first	one	that	fails)

11

Where	to	Write	Assertions
• Function	entry:		Are	arguments	legal?
– Place	blame	on	the	caller	before	the	function	fails

• Function	exit:		Is	result	correct?

• Places	with	tricky	or	interesting	code

• Assertions	are	ordinary	statements;	e.g.,	can	appear	
within	a	loop:

for n in myNumbers:
assert type(n) == int or type(n) == float

12

Where	not to	Write	Assertions
• Don’t	clutter	the	code

– Same	rule	as	for	comments

• Don’t	write	assertions	that	are	certain	to	succeed
– The	existence	of	an	assertion	tells	a	programmer	that	it	might	

possibly	fail

• Don’t	write	an	assertion	if	the	following	code	would	fail	
informatively

assert type(name) == str
print("Hello, " + name)

• Write	assertions	where	they	may	be	useful	for	debugging

13

What	to	Write	Assertions	About

• Results	of	computations

• Correctly-formed	data	structures

assert 0 <= index < len(mylist)
assert len(list1) == len(list2)

14

When	to	Write	Tests
• Two	possibilities:

– Write	code	first,	then	write	tests
– Write	tests	first,	then	write	code

• If	you	write	the	code	first,	you	remember	the	
implementation	while	writing	the	tests
– You	are	likely	to	make	the	same	mistakes	in	the	implementation

• If	you	write	the	tests	first,	you	will	think	more	about	the	
functionality	than	about	a	particular	implementation
– You	might	notice	some	aspect	of	behavior	that	you	would	have	

made	a	mistake	about
– This	is	the	better	choice

15

Write	the	Whole	Test
• A	common	mistake:

1. Write	the	function
2. Make	up	test	inputs
3. Run	the	function
4. Use	the	result	as	the	oracle

• You	didn’t	write	a	test,	but	only	half	of	a	test
– Created	the	tests	inputs,	but	not	the	oracle

• The	test	does	not	determine	whether	the	function	is	
correct
– Only	determines	that	it	continues	to	be	as	correct	(or	incorrect)	

as	it	was	before

16

Testing	Approaches

• Black	box	testing	- Choose	test	data	without
looking	at	implementation	

• Glass	box	(white	box,	clear	box)	testing -
Choose	test	data	with knowledge	of	
implementation	

17

Inside	Knowledge	might	be	Nice
• Assume	the	code	below:

c = a + b
if c > 100

print("Tested”)
print("Passed”)

• Creating	a	test	case	with	a=40	and	b=70	is	not	enough
– Although	every	line	of	the	code	will	be	executed

• Another	test	case	with	a=40	and	b=30	would	complete	the	
test

18

Tests	might	not	Reveal	an	Error	
Sometimes

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers)

Tests
assert mean([1, 2, 3, 4, 5]) == 3
assert mean([1, 2, 3]) == 2

This	implementation	is	elegant,	but	wrong!

mean([1,2,3,4]) à would return 2.5!!!

19

Last	but	not	Least,	Don’t	Write	
Meaningless	Tests

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers)

Unnecessary	tests.		Don’t	write	these:

mean([1, 2, "hello"])
mean("hello")
mean([])

20

