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Testing

• Programming	to	analyze	data	is	powerful
• It	is	useless	if	the	results	are	not	correct
• Correctness	is	far	more	important	than	speed
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Famous	Examples
• Ariane 5	rocket
– On	June	4,	1996,	the	maiden	flight	
of	the	European	Ariane	5	launcher	
crashed	about	40	seconds	after	takeoff.

– Media	reports	indicated	that	the	amount	lost	was	half	
a	billion	dollars

– The	explosion	was	the	result	of	a	software	error

• Therac-25	radiation	therapy	machine
– In	1985	a	Canadian-built	radiation-treatment	device	
began	blasting	holes	through	patients'	bodies.
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Testing	does	not	Prove Correctness

• Edsger Dijkstra:	“Program	testing	can	be	used	
to	show	the	presence	of	bugs,	but	never	to	
show	their	absence!”
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Testing	=	Double-Checking	Results
• How	do	you	know	your	program	is	right?
– Compare	its	output	to	a	correct	output

• How	do	you	know	a	correct	output?
– Real	data	is	big
– You	wrote	a	computer	program	because	it	is	not	
convenient	to	compute	it	by	hand

• Use	small	inputs	so	you	can	compute	by	hand

• Example:		standard	deviation
– What	are	good	tests	for	std_dev?
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Testing	≠	Debugging

• Testing:		Determining	whether your	program	is	
correct
– Doesn’t	say	where or	how your	program	is	incorrect

• Debugging:		Locating	the	specific	defect	in	your	
program,	and	fixing	it
2	key	ideas:
– divide	and	conquer
– the	scientific	method
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What	is	a	Test?
• A	test	consists	of:

– an	input (sometimes	called	“test	data”)
– an	oracle (a	predicate	(boolean expression)	of	the	output)

• Example	test	for	sum:
– input:		[1,	2,	3]
– oracle:		result	is	6
– write	the	test	as:			sum([1, 2, 3]) == 6

• Example	test	for	sqrt:
– input:		3.14
– oracle:		result	is	within	0.00001	of	1.772
– ways	to	write	the	test:
• sqrt(3.14) – 1.772 < 0.00001  and  sqrt(3.14) – 1.772 > -0.00001 
• -0.00001 < sqrt(3.14) – 1.772 < 0.00001
• math.abs(sqrt(3.14) – 1.772) < 0.00001
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Test	Results

• The	test	passes if	the	boolean	expression	evaluates	
to	True

• The	test	fails if	the	boolean	expression	evaluates	to	
False

• Use	the	assert statement:
– assert sum([1, 2, 3]) == 6
– assert True does	nothing
– assert False crashes	the	program	and	prints	a	
message
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Where	to	Write	Test	Cases
• At	the	top	level:		is	run	every	time	you	load	your	program

def hypotenuse(a, b):
…

assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

• In	a	test	function:		is	run	when	you	invoke	the	function	
def hypotenuse(a, b):
…

def test_hypotenuse():
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13
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Assertions	are	not	Just	for	Test	Cases

• Use	assertions	throughout	your	code

• Documents	what	you	think	is	true	about	your	
algorithm

• Lets	you	know	immediately	when	something	goes	
wrong
– The	longer	between	a	code	mistake	and	the	programmer	
noticing,	the	harder	it	is	to	debug	

10



Assertions	Make	Debugging	Easier
• Common,	but	unfortunate,	course	of	events:

– Code	contains	a	mistake	(incorrect	assumption	or	algorithm)
– Intermediate	value	(e.g.,	result	of	a	function	call)	is	incorrect
– That	value	is	used	in	other	computations,	or	copied	into	other	

variables
– Eventually,	the	user	notices	that	the	overall	program	produces	a	

wrong	result
– Where	is	the	mistake	in	the	program?		It	could	be	anywhere.

• Suppose	you	had	10	assertions	evenly	distributed	in	your	
code
– When	one	fails,	you	can	localize	the	mistake	to	1/10	of	your	

code	(the	part	between	the	last	assertion	that	passes	and	the	
first	one	that	fails)
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Where	to	Write	Assertions
• Function	entry:		Are	arguments	legal?
– Place	blame	on	the	caller	before	the	function	fails

• Function	exit:		Is	result	correct?

• Places	with	tricky	or	interesting	code

• Assertions	are	ordinary	statements;	e.g.,	can	appear	
within	a	loop:

for n in myNumbers:
assert type(n) == int or type(n) == float
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Where	not to	Write	Assertions
• Don’t	clutter	the	code

– Same	rule	as	for	comments

• Don’t	write	assertions	that	are	certain	to	succeed
– The	existence	of	an	assertion	tells	a	programmer	that	it	might	

possibly	fail

• Don’t	write	an	assertion	if	the	following	code	would	fail	
informatively

assert type(name) == str
print("Hello, " + name)

• Write	assertions	where	they	may	be	useful	for	debugging
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What	to	Write	Assertions	About

• Results	of	computations

• Correctly-formed	data	structures

assert 0 <= index < len(mylist)
assert len(list1) == len(list2)
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When	to	Write	Tests
• Two	possibilities:

– Write	code	first,	then	write	tests
– Write	tests	first,	then	write	code

• If	you	write	the	code	first,	you	remember	the	
implementation	while	writing	the	tests
– You	are	likely	to	make	the	same	mistakes	in	the	implementation

• If	you	write	the	tests	first,	you	will	think	more	about	the	
functionality	than	about	a	particular	implementation
– You	might	notice	some	aspect	of	behavior	that	you	would	have	

made	a	mistake	about
– This	is	the	better	choice
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Write	the	Whole	Test
• A	common	mistake:

1. Write	the	function
2. Make	up	test	inputs
3. Run	the	function
4. Use	the	result	as	the	oracle

• You	didn’t	write	a	test,	but	only	half	of	a	test
– Created	the	tests	inputs,	but	not	the	oracle

• The	test	does	not	determine	whether	the	function	is	
correct
– Only	determines	that	it	continues	to	be	as	correct	(or	incorrect)	

as	it	was	before
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Testing	Approaches

• Black	box	testing	- Choose	test	data	without
looking	at	implementation	

• Glass	box	(white	box,	clear	box)	testing -
Choose	test	data	with knowledge	of	
implementation	
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Inside	Knowledge	might	be	Nice
• Assume	the	code	below:

c = a + b
if c > 100

print("Tested”)
print("Passed”)

• Creating	a	test	case	with	a=40	and	b=70	is	not	enough
– Although	every	line	of	the	code	will	be	executed

• Another	test	case	with	a=40	and	b=30	would	complete	the	
test
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Tests	might	not	Reveal	an	Error	
Sometimes

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers)

# Tests
assert mean([1, 2, 3, 4, 5]) == 3
assert mean([1, 2, 3]) == 2

This	implementation	is	elegant,	but	wrong!

mean([1,2,3,4]) à would return 2.5!!!
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Last	but	not	Least,	Don’t	Write	
Meaningless	Tests

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers) 

Unnecessary	tests.		Don’t	write	these:

mean([1, 2, "hello"])
mean("hello")
mean([])
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