Testing

BBM 101 - Introduction to Programming |

Hacettepe University
Fall 2016

Fuat Akal, Aykut Erdem, Erkut Erdem

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140 1
University of Washington

Testing

* Programming to analyze data is powerful
* Itis useless if the results are not correct
* Correctness is far more important than speed

Famous Examples

* Ariane 5 rocket

— On June 4, 1996, the maiden flight
of the European Ariane 5 launcher
crashed about 40 seconds after takeoff.

— Media reports indicated that the amount lost was half
a billion dollars

— The explosion was the result of a software error

* Therac-25 radiation therapy machine

— In 1985 a Canadian-built radiation-treatment device
began blasting holes through patients' bodies.

Testing does not Prove Correctness

* Edsger Dijkstra: “Program testing can be used
to show the presence of bugs, but never to
show their absence!”

Testing = Double-Checking Results

* How do you know your program is right?
— Compare its output to a correct output

* How do you know a correct output?
— Real datais big

— You wrote a computer program because itis not
convenientto compute it by hand

* Use small inputs so you can compute by hand

* Example: standard deviation
— What are good tests for std_dev?

Testing # Debugging

Testing: Determining whether your program is
correct

— Doesn’t say where or how your program is incorrect

Debugging: Locating the specific defect in your
program, and fixing it

2 key ideas:

— divide and conquer

— the scientific method

What is a Test?

* A test consists of:

— aninput (sometimes called “test data”)

— anoracle (a predicate (boolean expression) of the output)
* Example test for sum:

— input: [1, 2, 3]

— oracle: resultis 6

— write thetestas: sum([1, 2, 3]) ==
* Example test for sqgrt:

— input: 3.14

— oracle: resultis within 0.00001 of 1.772

— ways to write the test:

+ sqrt(3.14) - 1.772 < 0.00001 and sqrt(3.14) - 1.772 > -0.00001
+ -0.00001 < sqrt(3.14) - 1.772 < 0.00001

+ math.abs (sqrt(3.14) - 1.772) < 0.00001

Test Results

The test passes if the boolean expression evaluates
to True

The test fails if the boolean expression evaluates to
False

Use the assert statement:
— assert sum([1, 2, 3]) ==
— assert True doesnothing

— assert False crashes the program and printsa
message

Where to Write Test Cases

* At the top level: is run every time you load your program
def hypotenuse(a, b):

assert hypotenuse (3, 4) ==
assert hypotenuse (5, 12) == 13

* In atest function: is run when you invoke the function
def hypotenuse(a, b):

def test hypotenuse():
assert hypotenuse (3, 4) == 5
assert hypotenuse(5, 12) == 13

Assertions are not Just for Test Cases

* Use assertions throughout your code

* Documents what you think is true about your

algorithm

* Lets you know immediately when something goes

wrong

— The longer between a code mistake and the programmer
noticing, the harder it is to debug

Assertions Make Debugging Easier

* Common, but unfortunate, course of events:
— Code contains a mistake (incorrectassumption oralgorithm)
Intermediate value (e.g., result of a function call) is incorrect

Thatvalueis used in other computations, or copied into other
variables

Eventually, the user notices that the overall program produces a
wrong result
Whereis the mistake in the program? It could be anywhere.

* Suppose you had 10 assertions evenly distributed in your
code
— When one fails, you can localize the mistake to 1/10 of your
code (the part between the last assertion that passes and the
first one that fails)

Where to Write Assertions

* Function entry: Are arguments legal?
— Place blame on the caller before the function fails

* Function exit: Is result correct?
* Places with tricky or interesting code

* Assertions are ordinary statements; e.g., can appear
within a loop:

for n in myNumbers:
assert type(n) == int or type(n) == float

Where not to Write Assertions

Don’t clutter the code
— Samerule as fOf' comments

Don’t write assertions that are certain to succeed

— The existence of an assertion tells a programmer thatit might
possibly fail

Don’t write an assertion if the following code would fail
informatively

assert type(name) == str
print("Hello, " + name)

Write assertions where they may be useful for debugging

What to Write Assertions About

* Results of computations

* Correctly-formed data structures

assert 0 <= index < len(mylist)
assert len(listl) == len(list2)

When to Write Tests

Two possibilities:
— Write code first, then write tests
— Write tests first, then write code

If you write the code first, you remember the
implementation while writing the tests

— You are likely to make the same mistakes in the implementation

If you write the tests first, you will think more about the
functionality than about a particular implementation

— You might notice some aspect of behavior that you would have
made a mistake about

— This is the better choice

Write the Whole Test

* A common mistake:
1. Write the function
2. Make up testinputs
3. Runthe function
4. Use the resultas the oracle

* You didn’t write a test, but only half of a test
— Created the tests inputs, but not the oracle

* The test does not determine whether the function is
correct

— Only determinesthat it continues to be as correct (or incorrect)
as it was before

Testing Approaches

* Black box testing - Choose test data without
looking at implementation

* Glass box (white box, clear box) testing -
Choose test data with knowledge of
implementation

Inside Knowledge might be Nice

¢ Assume the code below:

c=a+b
if ¢ > 100

print ("Tested”)
print ("Passed”)

* Creating a test case with a=40 and b=70 is not enough
— Although everyline of the code will be executed

* Another test case with a=40 and b=30 would complete the
test

Tests might not Reveal an Error
Sometimes

def mean (numbers) :
"""Returns the average of the argument list.
The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers)

Tests

assert mean([1, 2, 3, 4, 5]) = 3
assert mean([1, 2, 3]) ==

This implementation is elegant, but wrong!

mean([1,2,3,4]) = would return 2.5!!!

Last but not Least, Don’t Write
Meaningless Tests

def mean (numbers) :
"""Returns the average of the argument list.
The argument must be a non-empty list of numbers."""
return sum(numbers)//len(numbers)

Unnecessary tests. Don’t write these:
mean([1l, 2, "hello"])

mean ("hello")
mean ([])

20

