Algorithmic Speed

BBM 101-Introduction to Programming I
Hacettepe University
Fall 2016
Fuat Akal, Aykut Erdem, Erkut Erdem

Slides based on material prepared by E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x

Measuring complexity

- Goals in designing programs

1. It returns the correct answer on all legal inputs
2. It performs the computation efficiently

- Typically (1) is most important, but sometimes (2) is also critical, e.g., programs for collision detection
- Even when (1) is most important, it is valuable to understand and optimize (2)

How do we measure complexity?

- Given a function, would like to answer: "How long will this take to run?"
- Could just run on some input and time it.
- Problem is that this depends on:

1. Speed of computer
2. Specifics of Python implementation
3. Value of input

- Avoid (1) and (2) by measuring time in terms of number of basic steps executed

Measuring basic steps

- Use a random access machine (RAM) as model of computation
- Steps are executed sequentially
- Step is an operation that takes constant time
- Assignment
- Comparison
- Arithmetic operation
- Accessing object in memory
- For point (3), measure time in terms of size of input

But complexity might depend on value of input?

```
def linearSearch(L, x):
```

 for \(e\) in \(L\) :
 if \(e=x\) :
 return True
 return False
 - If x happens to be near front of L, then returns True almost immediately
- If x not in L, then code will have to examine all elements of L
- Need a general way of measuring

Example

```
def fact(n):
    answer = 1
    while n > 1:
        answer *= n
        n -= 1
    return answer
```

- Number of steps
- 1 (for assignment)
-5^{*} (1 for test, plus 2 for first assignment, plus 2 for second assignment in while; repeated n times through while)
- 1 (for return)
- $5^{*} \mathrm{n}+2$ steps
- But as n gets large, 2 is irrelevant, so basically 5*n steps

Example

- What about the multiplicative constant (5 in this case)?
- We argue that in general, multiplicative constants are not relevant when comparing algorithms

Example

def sqrtBi (x, eps) :

low $=0.0$
high $=\max (1, x)$
ans $=($ high + low)/2.0
while abs (ans**2 - x) >= eps:
if ans**2 < x:
low = ans
else:
high $=$ ans
ans $=($ high + low)/2.0
return ans

- If we call this on 100 and 0.0001, will take thirty iterations of the loop
- Have roughly 10 steps within each iteration
- 1 billion or 9 billion versus 30 or 300 - it is size of problem that matters

Example

def sqrtExhaust(x, eps) :
step $=$ eps**2
ans $=0.0$
while abs (ans**2 - x) >= eps and ans $<=\max (x, 1)$:

$$
\text { ans }+=\text { step }
$$

return ans

- If we call this on 100 and 0.0001 , will take one billion iterations of the loop
- Have roughly 9 steps within each iteration

Measuring complexity

- Given this difference in iterations through loop, multiplicative factor (number of steps within loop) probably irrelevant
- Thus, we will focus on measuring the complexity as a function of input size
- Will focus on the largest factor in this expression
- Will be mostly concerned with the worst case scenario

Asymptotic notation

- Need a formal way to talk about relationship between running time and size of inputs
- Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity

Example

- $1000+2 x+2 x^{2}$
- If x is small, constant term dominates
- E.g., $x=10$ then 1000 of 1220 steps are in first loop
- If x is large, quadratic term dominates
- E.g. $x=1,000,000$, then first loop takes 0.000000005% of time, second loop takes 0.0001% of time (out of 2,000,002,001,000 steps)!

Example

```
def f(x):
    for i in range (1000):
        ans = i
    for i in range(x):
        ans += 1
    for i in range(x):
        for j in range(x):
            ans += 1
```

Complexity is $1000+2 x+2 x^{2}$, if each line takes one step

Example

- So really only need to consider the nested loops (quadratic component)
- Does it matter that this part takes $2 x^{2}$ steps, as opposed to say x^{2} steps?
- For our example, if our computer executes 100 million steps per second, difference is 5.5 hours versus 2.25 hours
- On the other hand if we can find a linear algorithm, this would run in a fraction of a second
- So multiplicative factors probably not crucial, but order of growth is crucial

Rules of thumb for complexity

- Asymptotic complexity
- Describe running time in terms of number of basic steps
- If running time is sum of multiple terms, keep one with the largest growth rate
- If remaining term is a product, drop any multiplicative constants
- Use "Big O" notation (aka Omicron)
- Gives an upper bound on asymptotic growth of a function

Constant complexity

- Complexity independent of inputs
- Very few interesting algorithms in this class, but can often have pieces that fit this class
- Can have loops or recursive calls, but number of iterations or calls independent of size of input

Complexity classes

- O (1) denotes constant running time
- O(log n) denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $O\left(c^{n}\right)$ denotes exponential running time (c is a constant being raised to a power based on size of input)

Logarithmic complexity

- Complexity grows as log of size of one of its inputs
- Example:
- Bisection search
- Binary search of a list

Logarithmic complexity

```
def intToStr(i):
    digits = '0123456789'
    if i == 0:
    return '0'
    result = ''
    while i > 0:
        result = digits[i%10] + result
        i = i//10
    return result
```


Linear complexity

- Searching a list in order to see if an element is present
- Add characters of a string, assumed to be composed of decimal digits

```
def addDigits(s):
    val = 0
    for c in s
        val += int(c)
    return val
```

- O(len(s))

Logarithmic complexity

def intToStr(i):
digits = '0123456789
if $i=0$:
return ' 0 '
result = ''
while i > 0:
result $=$ digits[i\%10]
$i=i / / 10$
return result

- Only have to look at loop as no function calls
- Within while loop constant number of steps
- How many times through loop?
- How many times can one divide i by 10?
- O(log(i))

Linear complexity

- Complexity can depend on number of recursive calls
def fact(n):
if $\mathrm{n}=1$:
return 1
else:
return $n *$ fact ($n-1$)
- Number of recursive calls?
- Fact(n), then fact(n-1), etc. until get to fact(1)
- Complexity of each call is constant
- O(n)

Log-linear complexity

- Many practical algorithms are log-linear
- Very commonly used log-linear algorithm is merge sort
- Will return to this

Polynomial complexity

- Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- Commonly occurs when we have nested loops or recursive function calls

Quadratic complexity

```
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
            if not matched:
            return False
        return True
```


Quadratic complexity

```
def isSubset(L1, L2):
    for e1 in L1
        matched = False
        for e2 in L2:
            if e1 == e2.
                matched = True
                break
        if not matched.
            return False
    return True
```

- Outer loop executed len(L1) times
- Each iteration will execute inner loop up to len(L2) times
- O(len(L1)*len(L2))
- Worst case when L1 and L2 same length, none of elements of L1 in L2
- O(len(L1)²)

Quadratic complexity

Find intersection of two lists, return a list with each element appearing only once

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
            if e1 == e2:
                tmp.append (e1)
    res = []
    for e in tmp:
        if not(e in res):
            res.append (e)
    return res
```


Exponential complexity

- Recursive functions where more than one recursive call for each size of problem
- Towers of Hanoi
- Many important problems are inherently exponential
- Unfortunate, as cost can be high
- Will lead us to consider approximate solutions more quickly

Quadratic complexity

def intersect(L1, L2):
tmp $=$ []
for e1 in L1:
for e2 in L2:
if e1 == e2:
tmp . append (e1)
res = []
for e in tmp:
if $\operatorname{not}(\mathrm{e}$ in res): res.append (e)
return res

- First nested loop takes len(L1)*len(L2) steps
- Second loop takes at most len(L1) steps
- Latter term overwhelmed by former term
- O(len(L1)*len(L2))

Exponential complexity

def genSubsets(L):
res $=$ []
if $\operatorname{len}(\mathrm{L})==0$:
return [[]] \#list of empty list
smaller $=$ genSubsets (L[:-1])
\# get all subsets without last element
extra $=\mathrm{L}[-1$: $]$
\# create a list of just last element
new = []
for small in smaller:
new. append (small+extra)
\# for all smaller solutions, add one with last element
return smaller+new
\# combine those with last element and those without

Exponential complexity

def genSubsets(L):
res $=$ []
if len(L) $==0$:
return [[]]
smaller $=$ genSubsets (L[:-1])
extra $=\mathrm{L}[-1:]$
new = []
for small in smaller:
new. append (small+extra)
return smaller+new

- Assuming append is constant time
- Time includes time to solve smaller problem, plus time needed to make a copy of all elements in smaller problem

Exponential complexity

def genSubsets(L):

res = []
if $\operatorname{len}(\mathrm{L})=0$:
return [[]]
smaller $=$ genSubsets (L[:-1])
extra = L[-1:]
new = []
for small in smaller:
new. append(small+extra)
return smallertnew

- But important to think about size of smaller
- Know that for a set of size k there are $2 k$ cases
- So to solve need $2^{n-1}+$ $2^{n-2}+\ldots+2^{0}$ steps
- Math tells us this is $O(2 n)$

Complexity classes

- O(1) denotes constant running time
- $O(\log n)$ denotes logarithmic running time
- $O(n)$ denotes linear running time
- $O(n \log n)$ denotes log-linear running time
- $O\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $O\left(c^{n}\right)$ denotes exponential running time (c is a constant being raised to a power based on size of input)

Comparing complexities

- So does it really matter if our code is of a particular class of complexity?
- Depends on size of problem, but for large scale problems, complexity of worst case makes a difference

Constant versus Logarithmic

Logarithmic versus Linear

Observations

- A logarithmic algorithm is often almost as good as a constant time algorithm
- Logarithmic costs grow very slowly

Observations

- Logarithmic clearly better for large scale problems than linear
- Does not imply linear is bad, however

Linear versus Log-linear

Observations

- While log(n) may grow slowly, when multiplied by a linear factor, growth is much more rapid than pure linear
- $O(n \log n)$ algorithms are still very valuable

Log-linear versus Quadratic

Observations

- Quadratic is often a problem, however.
- Some problems inherently quadratic but if possible always better to look for more efficient solutions

Quadratic versus Exponential

- Exponential algorithms very expensive
- Right plot is on a log scale, since left plot almost invisible given how rapidly exponential grows
- Exponential generally not of use except for small problems

