
Development	Strategies,	
Function	Design
BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut	Erdem,	Erkut	Erdem

Today

• How	to	develop	a	program
– Program	development	strategy

• More	on	Testing	and	Debugging
– Testing	and	debugging	
– Black	box	testing	
– Glass	box	testing	
– Integration	testing	and	unit	testing	
– Debugging	approaches

2

Today

• How	to	develop	a	program
– Program	development	strategy

• More	on	Testing	and	Debugging
– Testing	and	debugging	
– Black	box	testing	
– Glass	box	testing	
– Integration	testing	and	unit	testing	
– Debugging	approaches

Slides	based	on	material	prepared	by	Ruth	Anderson,	Michael	Ernst	and	Bill	Howe	in	the	course	CSE	140
University	of	Washington

3

Program	development	methodology:
English	first,	then	Python

1. Define	the	problem
2. Decide	upon	an	algorithm
3. Translate	it	into	code

Try	to	do	these	steps	in	order

4

Program	development	methodology:
English	first,	then	Python

1. Define	the	problem
A. Write	an	English	description	of	the	input	and	output	

for	the	whole	program.	(Do	not	give	details	about	
how	you	will	compute	the		output.)

B. Create	test	cases	for	the	whole	program
• Input	and expected	output

2. Decide	upon	an	algorithm
3. Translate	it	into	code

Try	to	do	these	steps	in	order

5

Program	development	methodology:
English	first,	then	Python

1. Define	the	problem
2. Decide	upon	an	algorithm

A. Implement	it	in	English
• Write	the	recipe	or step-by-step	instructions

B. Test	it	using	paper	and	pencil
• Use	small	but	not	trivial	test	cases
• Play	computer,	animating	the	algorithm
• Be	introspective

– Notice	what	you	really	do
– May	be	more	or	less	than	what	you	wrote	down
– Make	the	algorithm	more	precise

3. Translate	it	into	code

Try	to	do	these	steps	in	order

6

Program	development	methodology:
English	first,	then	Python

1. Define	the	problem
2. Decide	upon	an	algorithm
3. Translate	it	into	code

A. Implement	it	in	Python
• Decompose	it	into	logical	units	(functions)
• For	each	function:

– Name	it	(important	and	difficult!)
– Write	its	documentation	string	(its	specification)
– Write	tests
– Write	its	code
– Test	the	function

B. Test	the	whole	program

Try	to	do	these	steps	in	order

7

Program	development	methodology:
English	first,	then	Python

1. Define	the	problem
2. Decide	upon	an	algorithm
3. Translate	it	into	code

Try	to	do	these	steps	in	order
– It’s	OK	(even	common)	to	back	up	to	a	previous	step	

when	you	notice	a	problem
– You	are	incrementally	learning	about	the	problem,	

the	algorithm,	and	the	code
– “Iterative	development”

8

The	Wishful	Thinking	approach
to	implementing	a	function

• If	you	are	not	sure	how	to	implement	one	part	of	
your	function,	define	a	helper	function	that	does	
that	task
– “I	wish	I	knew	how	to	do	task	X”
– Give	it	a	name	and	assume	that	it	works
– Go	ahead	and	complete	the	implementation	of	your	
function,	using the	helper	function	(and	assuming	it	works)

– Later,	implement	the	helper	function
– The	helper	function	should	have	a	simpler/smaller	task

9

The	Wishful	Thinking	approach
to	implementing	a	function

• Can	you	test	the	original	function?
– Yes,	by	using	a	stub for	the	helper	function
– Often	a	lookup	table:		works	for	only	5	inputs,	crashes	
otherwise,	or	maybe	just	returns	the	same	value	every	time

10

Why	functions?
There	are	several	reasons:
• Creating	a	new	function	gives	you	an	opportunity	to	name	a	group	

of	statements,	which	makes	your	program	easier	to	read	and	
debug.

• Functions	can	make	a	program	smaller by	eliminating	repetitive	
code.	Later,	if	you	make	a	change,	you	only	have	to	make	it	in	one	
place.

• Dividing	a	long	program	into	functions	allows	you	to	debug	the	
parts	one	at	a	time	and	then	assemble	them	into	a	working	whole.

• Well-designed	functions	are	often	useful	for	many	programs.	Once	
you	write	and	debug	one,	you	can	reuse	it.

11

Today

• How	to	develop	a	program
– Program	development	strategy

• More	on	Testing	and	Debugging
– Testing	and	debugging	
– Black	box	testing	
– Glass	box	testing	
– Integration	testing	and	unit	testing	
– Debugging	approaches

Slides	based	on	material	prepared	by	E.	Grimson,	J.	Guttag and	C.	Terman in	MITx 6.00.1x 12

Testing	and	Debugging	

• Would	be	great	if	our	code	always	worked	properly	
the	first	time	we	run	it!	

• But	life	ain’t perfect,	so	we	need:	
– Testing	methods	

• Ways	of	trying	code	on	examples	to	determine	if	
running	correctly	

– Debugging	methods
• Ways	of	fixing	a	program	that	you	know	does	not	work	
as	intended	

13

When	should	you	test	and	debug?	

• Design	your	code	for	ease	of	testing	and	
debugging	
– Break	program	into	components	that	can	be	
tested	and	debugged	independently	

– Document	constraints	on	modules	
• Expectations	on	inputs,	on	outputs	
• Even	if	code	does	not	enforce	constraints,	
valuable	for	debugging	to	have	description	

– Document	assumptions	behind	code	design	

14

When	are	you	ready	to	test?	

• Ensure	that	code	will	actually	run	
– Remove	syntax	errors	
– Remove	static	semantic	errors	
– Both	of	these	are	typically	handled	by	the	Python	
interpreter

• Have	a	set	of	expected	results	(i.e.	input- output	
pairings)	ready	

15

Testing

• Goal:
– Show	that	bugs	exist	
– Would	be	great	to	prove	code	is	bug	free,	but	generally	
hard	
• Usually	can’t	run	on	all	possible	inputs	to	check	
• Formal	methods	sometimes	help,	but	usually	only	on	
simpler	code	

“Program testing can be used to show the presence of
bugs, but never to show their absence!”

– Edsger Dijkstra

16

Test	suite

• Want	to	find	a	collection	of	inputs	that	has	high	
likelihood	of	revealing	bugs,	yet	is	efficient	
– Partition	space	of	inputs into	subsets	that	provide	
equivalent	information	about	correctness
• Partition	divides	a	set	into	group	of	subsets	such	that	
each	element	of	set	is	in	exactly	one	subset	

– Construct	test	suite that	contains	one	input	from	each	
element	of	partition	

– Run	test	suite

17

Example	of	partition
def isBigger(x, y):

“““Assumes x and y are ints
returns True if x is less than y
else False”””

• Input	space	is	all	pairs	of	integers	
• Possible	partition

– x	positive,	y	positive	
– x	negative,	y	negative	
– x	positive,	y	negative	
– x	negative,	y	positive	
– x=0,y=0
– x=0,y!=0
– x!=0,y=0	

18

Why	this	partition?

• Lots	of	other	choices	
– E.g.,	x	prime,	y	not;	y	prime,	x	not;	both	prime;	both	not	

• Space	of	inputs	often	have	natural	boundaries	
– Integers	are	positive,	negative	or	zero	
– From	this	perspective,	have	9	subsets
•	Split	x	=	0,	y	!=	0	into	x	=	0,	y	positive	and	x	=0,	y	negative
•	Same	for	x	!=	0,	y	=	0	

19

Partitioning

• What	if	no	natural	partition	to	input	space?	

– Random	testing	– probability	that	code	is	correct	increases	
with	number	of	trials;	but	should	be	able	to	use	code	to	do	
better	

– Use	heuristics	based	on	exploring	paths	through	the	
specifications	– black-box	testing	

– Use	heuristics	based	on	exploring	paths	through	the	code	
– glass-box	testing	

20

Black-box	testing

• Test	suite	designed	without	looking	at	code	
– Can	be	done	by	someone	other	than	implementer	
– Will	avoid	inherent	biases	of	implementer,	exposing	
potential	bugs	more	easily	

– Testing	designed	without	knowledge	of	implementation,	
thus	can	be	reused	even	if	implementation	changed	

21

Paths	through	a	specification	
def sqrt(x, eps):

“““Assumes x, eps floats
x >= 0
eps > 0

returns res such that
x-eps <= res*res <= x+eps”””

• Paths	through	specification:	
– x	=	0	
– x	>	0	

• But	clearly	not	enough	

22

Paths	through	a	specification	

• Also	good	to	consider	boundary	cases	
– For	lists:	empty	list,	singleton	list,	many	element	list	
– For	numbers,	very	small,	very	large,	“typical”	

23

Example
• For	our	sqrt case,	try	
these:	
– First	four	are	typical	
• Perfect	square	
• Irrational	square	root	
• Example	less	than	1	

– Last	five	test	extremes	
• If	bug,	might	be	code,	
or	might	be	spec	
(e.g.	don’t	try	to	find	
root	if	eps tiny)	

x eps

0.0 0.0001

25.0 0.0001

.05 0.0001

2.0 0.0001

2.0 1.0/2.0**64.0

1.0/2.0**64.0 1.0/2.0**64.0

2.0**64.0 1.0/2.0**64.0

1.0/2.0**64.0 2.0**64.0

2.0**64.0 2.0**64.0

24

Glass-box	Testing

• Use	code	directly	to	guide	design	of	test	cases	

• Glass-box	test	suite	is	path-complete	if	every	
potential	path	through	the	code	is	tested	at	least	
once	
– Not	always	possible	if	loop	can	be	exercised	arbitrary	
times,	or	recursion	can	be	arbitrarily	deep	

• Even	path-complete	suite	can	miss	a	bug,	depending	
on	choice	of	examples	

25

Example
def abs(x):

“““Assumes x is an int
returns x if x>=0 and –x otherwise”””

if x < -1:
return –x

else:
return x

• Test	suite	of	{-2,	2}	will	be	path	complete	
• But	will	miss	abs(-1)which	incorrectly	returns	-1
– Testing	boundary	cases	and	typical	cases	would	catch	this	
{-2	-1,	2}	

26

Rules	of	thumb	for	glass-box	testing	

• Exercise	both	branches	of	all	if	statements	
• Ensure	each	except	clause	is	executed	
• For	each	for	loop,	have	tests	where:	

– Loop	is	not	entered
– Body	of	loop	executed	exactly	once
– Body	of	loop	executed	more	than	once	

• For	each	while	loop,
– Same	cases	as	for	loops
– Cases	that	catch	all	ways	to	exit	loop	

• For	recursive	functions,	test	with	no	recursive	calls,	one	
recursive	call,	and	more	than	one	recursive	call

27

Conducting	tests	

• Start	with	unit	testing	
– Check	that	each	module	(e.g.	function)	works	correctly

• Move	to	integration	testing
– Check	that	system	as	whole	works	correctly	

• Cycle	between	these	phases	

28

Test	Drivers	and	Stubs	

• Drivers	are	code	that
– Set	up	environment	needed	to	run	code
– Invoke	code	on	predefined	sequence	of	inputs	
– Save	results,	and
– Report	

• Drivers	simulate	parts	of	program	that	use	unit	being	
tested	

• Stubs	simulate	parts	of	program	used	by	unit	being	
tested	
– Allow	you	to	test	units	that	depend	on	software	not	yet	
written	

29

Good	testing	practice

• Start	with	unit	testing	
• Move	to	integration	testing	
• After	code	is	corrected,	be	sure	to	do	regression	
testing:	
– Check	that	program	still	passes	all	the	tests	it	used	to	pass,	
i.e.,	that	your	code	fix	hasn’t	broken	something	that	used	
to	work	

30

“Most people, if you describe a train of events to them, will tell you what the result
would be. They can put those events together in their minds, and argue from them that
something will come to pass. There are few people, however, who, if you told them a
result, would be able to evolve from their own inner consciousness what the steps were
which led up to that result. This power is what I mean when I talk of reasoning
backwards, or analytically.“ -- Sherlock Holmes (A Study in Scarlet, by Sir Arthur Conan Doyle)

Debugging

31

Runtime	bugs

• Overt	vs.	covert:
– Overt	has	an	obvious	manifestation	– code	crashes	or	runs	
forever	

– Covert	has	no	obvious	manifestation	– code	returns	a	
value,	which	may	be	incorrect	but	hard	to	determine	

• Persistent	vs.	intermittent:	
– Persistent	occurs	every	time	code	is	run	
– Intermittent	only	occurs	some	times,	even	if	run	on	same	
input	

32

Categories	of	bugs

• Overt	and	persistent	
– Obvious	to	detect	
– Good	programmers	use	defensive	programming	to	try	to	
ensure	that	if	error	is	made,	bug	will	fall	into	this	category	

• Overt	and	intermittent
– More	frustrating,	can	be	harder	to	debug,	but	if	conditions	
that	prompt	bug	can	be	reproduced,	can	be	handled

• Covert	
– Highly	dangerous,	as	users	may	not	realize	answers	are	
incorrect	until	code	has	been	run	for	long	period	

33

Debugging	skills	

• Treat	as	a	search	problem:	looking	for	explanation	for	
incorrect	behavior	
– Study	available	data	– both	correct	test	cases	and	incorrect	ones	
– Form	an	hypothesis	consistent	with	the	data	
– Design	and	run	a	repeatable	experiment	with	potential	to	refute	

the	hypothesis	
– Keep	record	of	experiments	performed:	use	narrow	range	of	

hypotheses	

34

Debugging	as	search

• Want	to	narrow	down	space	of	possible	sources	of	error	
• Design	experiments	that	expose	intermediate	stages	of	

computation	(use	print statements!),	and	use	results	to	
further	narrow	search	

• Binary	search	can	be	a	powerful	tool	for	this	

35

Some	pragmatic	hints	

• Look	for	the	usual	suspects	
• Ask	why	the	code	is	doing	what	it	is,	not	why	it	is	not	

doing	what	you	want	
• The	bug	is	probably	not	where	you	think	it	is	– eliminate	

locations	
• Explain	the	problem	to	someone	else	
• Don’t	believe	the	documentation	
• Take	a	break	and	come	back	to	the	bug	later	

36

