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A	dice-rolling	game

• Two	players	each	roll	a	die

• The	higher	roll	wins

– Goal:		roll	as	high	as	you	can!

• Repeat	the	game	6	times
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Hypotheses	regarding	the	outcome

• Luck

• Fraud

– loaded	die

– inaccurate	 reporting

• How	likely	is	luck?

• How	do	we	decide?
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Questions	that	statistics	can	answer

• I	am	flipping	a	coin.		Is	it	fair?

How	confident	am	I	in	my	answer?

• I	have	two	bags	of	beans,	each	containing	some	black	

and	some	white	beans.		I	have	a	handful	of	beans.		

Which	bag	did	the	handful	come	from?

• I	have	a	handful	of	beans,	and	a	single	bag.		Did	the	

handful	come	from	that	bag?

• Does	this	drug	improve	patient	outcomes?

• Which	website	design	yields	greater	revenue?

• Which	baseball	player	should	my	team	draft?

• What	premium	should	an	insurer	charge?

• Which	chemical	process	leads	to	the	best-tasting	beer?
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What	can	happen	when	you	roll	a	die?

What	is	the	likelihood	of	each?
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What	can	happen	when	you	roll	two	dice?

8 9 10 11 12765432

How	likely	are	you	to	

roll	11	or	higher?

This	probability	

is		known	as	

the	“p	value”.
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How	to	compute	p	values

• Via	a	statistical	formula

– Requires	 you	to	make	assumptions	 and	know	

which	formula	to	use

• Computationally	(simulation)

– Run	many	experiments

– Count	the	fraction	with	a	better	result

• Requires	a	metric/measurement	 for	“better”

– Requires	 you	to	be	able	to	run	the	experiments

– We	will	use	this	approach	exclusively
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Analogy	between	hypothesis	testing	
and	mathematical	proofs

“The	underlying	logic	[of	hypothesis	testing]	is	

similar	to	a	proof	by	contradiction.	To	prove	a	

mathematical	statement,	A,	you	assume	

temporarily	that	A	is	false.	If	that	assumption	

leads	to	a	contradiction,	you	conclude	that	A	

must	actually	be	true.”

From	the	book	Think	Statistics by	Allen	Downey

8



Interpreting	p	values
p	value	of	5%	or	less	=	statistically	significant

– This	is	a	convention;	there	is	nothing	magical	about	5%

Two	types	of	errors	may	occur	in	statistical	tests:

• false	positive (or	false	alarm	or	Type	I	error):		no	real	effect,	

but	report	an	effect	(through	good/bad	luck	or	coincidence)

– If	no	real	effect,	a	false	positive	occurs	about	1	time	in	20

• false	negative (or	miss or	Type	II	error):		real	effect,	but	

report	no	effect	(through	good/bad	luck	or	coincidence)

The	larger the	sample,	the	less	the	likelihood	of	a	false	
positive	or	negative
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http://xkcd.com/882/

A	false	
positive
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http://xkcd.com/882/

http://xkcd.com/882/
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Summary	of	statistical	methodology

1. Decide	on	a	metric	(bigger	value	=	better)

2. Observe	what	you	see	in	the	real	world

3. Hypothesize	that	what	you	saw	is	normal/typical

This	is	the	“null	hypothesis”

4. Simulate	the	real	world	many	times

5. How	different	is	what	you	observed	from	the	

simulations?

What	percent	of	the	simulation	values	are	the	real	world	

values	bigger	than?

6. If	the	percentage	is	95%	or	more,	reject	the	null	

hypothesis
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A	common	error

1. Observe	what	you	see	in	the	real	world

2. Decide	on	a	metric	(bigger	value	=	better)

This	is	backwards
For	any	observation,	there	is	something	unique	

about	it.

Example:		Roll	dice,	then	be	amazed	because	

what	are	the	odds	you	would	get	exactly	that	

combination	of	rolls?
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Correlation	≠ causation
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Statistical	significance
≠ practical	importance
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Don’t	trust	your	intuition

• People	have	very	bad	statistical	intuition

• It’s	much	better	to	follow	the	methodology	

and	do	the	experiments
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The	Law	of	Large	Numbers
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The	Law	of	Large	Numbers

• In	repeated	 independent	tests	with	the	same	actual	
probability	p	of	a	particular	outcome	in	each	test,	

the	chance	 that	the	fraction	of	times	that	outcome	

occurs	differs	from	p	converges	to	zero	as	the	
number	of	trials	goes	to	infinity.	

186.00x Law of Large Numbers 

Law of Large Numbers 

In repeated independent tests with the same actual 
probability p of a particular outcome in each test, 

the chance that the fraction of times that outcome 
occurs differs from p converges to zero as the number 
of trials goes to infinity.  

6.00x Law of Large Numbers 

Gambler’s Fallacy 

If deviations from expected behavior occur, these 
deviations are likely to be evened out by opposite 
deviations in the future.  

Gambler’s	Fallacy

• If	deviations	from	expected	behavior	occur,	

these	deviations	are	likely	to	be	evened	out	by	

opposite	deviations	in	the	future.	
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def flipPlot(minExp, maxExp): 
"""Assumes minExp and maxExp positive 

integers; minExp < maxExp
Plots results of 2**minExp to

2**maxExp coin flips""" 

ratios = [] 
diffs = [] 
xAxis = [] 
for exp in range(minExp, maxExp + 1): 

xAxis.append(2**exp) 

... 
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for numFlips in xAxis: 
numHeads = 0 
for n in range(numFlips): 

if random.random() < 0.5: 
numHeads += 1 

numTails = numFlips - numHeads
ratios.append(numHeads/float(numTails)) 
diffs.append(abs(numHeads - numTails)) 

... 
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pylab.title('Difference Between Heads and Tails') 
pylab.xlabel('Number of Flips') 
pylab.ylabel('Abs(#Heads - #Tails)') 
pylab.plot(xAxis, diffs) 

pylab.figure() 
pylab.title('Heads/Tails Ratios') 
pylab.xlabel('Number of Flips') 
pylab.ylabel('Heads/Tails') 
pylab.plot(xAxis, ratios) 
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6.00x Law of Large Numbers 
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6.00x Law of Large Numbers 
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Plots	in	logarithmic	scale pylab.semilogx()
pylab.semilogy()

 

 Chapter 12.  Stochastic Programs, Probability, and Statistics  159 

It’s hard to see much of anything in the plot on the right, which is mostly a flat 
line.  This too is deceptive.  Even though there are sixteen data points, most of 
them are crowded into a small amount of real estate on the left side of the plot, 

so that the detail is impossible to see.  This occurs because values on the x-axis 

range from 16 to 1,0485,76, and unless instructed otherwise PyLab will space 
these points evenly along the axis.  This is called linear scaling. 

Fortunately, these visualization problems are easy to address in PyLab.  As we 
saw in Chapter 11, we can easily instruct our program to plot unconnected 
points, e.g., by writing pylab.plot(xAxis, diffs, 'bo').   

We can also instruct PyLab to use a logarithmic scale on either or both of the x 
and y axes by calling the functions pylab.semilogx and pylab.semilogy.  These 
functions are always applied to the current figure. 

Both plots use a logarithmic scale on the x-axis.  Since the x-values generated 
by flipPlot are 2minExp, 2minExp+1, .., 2maxExp, using a logarithmic x-axis causes 
the points to be evenly spaced along the x-axis—providing maximum separation 
between points.  The left-hand plot below also uses a logarithmic scale on the y-
axis.  The y values on this plot range from nearly 0 to nearly 1000.  If the y-axis 
were linearly scaled, it would be difficult to see the relatively small differences in 
y values on the left side of the plot.  On the other hand, on the plot on the right 
the y values are fairly tightly grouped, so we use a linear y-axis. 

 

 

Finger exercise:  Modify the code in Figure 12.3 so that it produces plots like 
those shown above. 

 

These plots are easier to interpret than the earlier plots.  The plot on the right 
suggests pretty strongly that the ratio of heads to tails converges to 1.0 as the 
number of flips gets large.  The meaning of the plot on the left is a bit less clear.  
It appears that the absolute difference grows with the number of flips, but it is 
not completely convincing. 

It is never possible to achieve perfect accuracy through sampling without 
sampling the entire population.  No matter how many samples we examine, we 
can never be sure that the sample set is typical until we examine every element 

How	Much	is	Enough?	

• How	many	samples	do	we	need	to	look	at	in	

order	to	have	a	justified	confidence	that	

something	that	is	true	about	the	population	of	

samples	is	also	true	about	the	population	

from	which	the	samples	were	drawn?	

• Depends	upon	the	variance in	the	underlying	
distribution	
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Variance

• We	measure	the	amount	of	variance	in	the	

outcomes	of	multiple	trials.	

def stdDev(X): 
mean = sum(X)/float(len(X)) 
tot = 0.0 
for x in X: 

tot += (x - mean)**2 
return (tot/len(X))**0.5 
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6.00x How Much Is Enough? 

in	logarithmic	scale pylab.semilogx()
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6.00x How Much Is Enough? 
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6.00x How Much Is Enough? 
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6.00x How Much Is Enough? 

Coefficient	of	Variation

• The	coefficient	of	variation	is	the	standard	
deviation	divided	by	the	mean.	

def CV(X):
mean = sum(X)/float(len(X))
try:

return stdDev(X)/mean
except ZeroDivisionError:

return float('Nan ')
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def flip(numFlips): 

def flipSim(numFlipsPerTrial, numTrials): 

def labelPlot(nf, nt, mean, sd): 

def makePlots(nf1, nf2, nt): 
"""nt = number of trials per experiment 

nf1 = number of flips 1st experiment 
nf2 = number of flips 2nd experiment""" 
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makePlots

def makePlots(numFlips1, numFlips2, numTrials): 
val1, mean1, sd1 = flipSim(numFlips1, numTrials) 
pylab.hist(val1, bins = 20) 
xmin,xmax = pylab.xlim() 
ymin,ymax = pylab.ylim() 
labelPlot(numFlips1, numTrials, mean1, sd1) 
pylab.figure() 
val2, mean2, sd2 = flipSim(numFlips2, numTrials) 
pylab.hist(val2, bins = 20) 
pylab.xlim(xmin, xmax) 
ymin, ymax = pylab.ylim() 
labelPlot(numFlips2, numTrials, mean2, sd2) 
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vals = [] 
for i in range(100000): 

num = random.random() 
vals.append(num) 

pylab.hist(vals, bins = 11) 

35

6.00x Standard Deviations and Histograms 

vals = [] 
for i in range(100000): 
    num = random.random() 
    vals.append(num) 
pylab.hist(vals, bins = 11) 
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vals = [] 
for i in range(100000): 

num = random.random() 
vals.append(num) 

pylab.hist(vals, bins = 11)
xmin, xmax = pylab.xlim() 
ymin, ymax = pylab.ylim() 
print 'x-range =', xmin, '-', xmax
print 'y-range =', ymin, '-', ymax
pylab.figure
pylab.hist(vals, bins = 11) 
#pylab.xlim(-1.0, 2.0) 



37

6.00x Standard Deviations and Histograms 


