
Recursion

BBM	101	- Introduction	to	Programming	I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut	Erdem

1Slides	based	on	material	prepared	by	E.	Grimson,	J.	Guttag and	C.	Terman in	MITx 6.00.1x,	
J.	DeNero in	CS	61A	(Berkeley)	and	R.	Sedgewick,	K.	Wayne	and	R.	Dondero (Princeton)

Recursive	functions

• A	function	is	called	recursive if	the	body	of	that	
function	calls	itself,	either	directly	or	indirectly.

• Implication: Executing	the	body	of	a	recursive	function	
may	require	applying	that	function	

2

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)
4

Iterative	algorithms

• Looping	constructs	(e.g.	while	or	for	loops)	
lead	naturally	to	iterative	algorithms	

• Can	conceptualize	as	capturing	computation	
in	a	set	of	“state	variables”	which	update	on	
each	iteration	through	the	loop	

3

Iterative	multiplication	by	successive	
additions

• Imagine	we	want	to	perform	multiplication	by	
successive	additions:	
– To	multiply	a	by	b,	add	a	to	itself	b	times	

• State	variables:
– i – iteration	number;	starts	at	b
– result	– current	value	of	computation;	starts	at	0	

• Update	rules
– i←i -1;	stop	when	0
– result ←	result	+	a	

4

Iterative	multiplication	by	successive	
additions

def iterMul(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

5

Recursive	version

• An	alternative	is	to	think	of	this	computation	
as:

a	*	b	=	a	+	a	+	...	+	a	

=	a	+	a	+	...	+	a	

=	a	+	a	*	(b	– 1)	
6

Recursive)version)

•  An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
)
)

=)a)+)a)+)…)+)a)
)
)

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

b	copies

Recursive)version)

•  An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
)
)

=)a)+)a)+)…)+)a)
)
)

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

b-1	copies

Recursion

• This	is	an	instance	of	a	recursive	algorithm	
– Reduce	a	problem	to	a	simpler	(or	smaller)	version	of	
the	same	problem,	plus	some	simple	computations	
• Recursive	step	

– Keep	reducing	until	reach	a	simple	case	that	can	be	
solved	directly	
• Base	case

• a*b=a;	if	b=1	(Base	case)
• a	*	b	=	a	+	a	*	(b-1);	otherwise	(Recursive	case)	

7

Recursive	multiplication
def recurMul(a,b):

if b == 1:
return a

else:
return a + recurMul(a,b-1)

8

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

9

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

recurMul(2,3)

10

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

recurMul(2,3)

11

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

recurMul(2,3)

12

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

a& 2&

b& 1&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

recurMul(2,3)

13

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

a& 2&

b& 1&

4&

2&

6&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +

recurMul(a,b-1)

recurMul(2,3)

14

The	Anatomy	of	a	Recursive	Function

15

def recurMul(a,b):
if b == 1:

return a
else:
return a + recurMul(a,b-1)

• The	def statement	header	is	similar	to	other	
functions

• Conditional	statements	check	for	base	cases
• Base	cases	are	evaluated	without	recursive	calls
• Recursive	cases	are	evaluated	with	recursive	calls	

Inductive	reasoning

• How	do	we	know	that	our	recursive	code	will	
work?	

• iterMul terminates	because	b	is	initially	positive,	
and	decrease	by	1	each	time	around	loop;	thus	
must	eventually	become	less	than	1	

• recurMul called	with	b	=	1	has	no	recursive	call	
and	stops	

• recurMul called	with	b	>	1	makes	a	recursive	call	
with	a	smaller	version	of	b;	must	eventually	reach	
call	with	b	=	1	

16

Mathematical	induction

• To	prove	a	statement	indexed	on	integers	is	
true	for	all	values	of	n:	
– Prove	it	is	true	when	n	is	smallest	value	(e.g.	n	=	0	
or	n	=	1)	

– Then	prove	that	if	it	is	true	for	an	arbitrary	value	
of	n,	one	can	show	that	it	must	be	true	for	n+1	

17

Example

• 0+1+2+3+...+n=(n(n+1))/2	
• Proof	
– If	n	=	0,	then	LHS	is	0	and	RHS	is	0*1/2	=	0,	so	true	
– Assume	true	for	some	k,	then	need	to	show	that
• 0	+	1	+	2	+	...	+	k	+	(k+1)	=	((k+1)(k+2))/2
• LHS	is	k(k+1)/2	+	(k+1)	by	assumption	that	property	
holds	for	problem	of	size	k
• This	becomes,	by	algebra,	((k+1)(k+2))/2

– Hence	expression	holds	for	all	n	>=	0	

18

What	does	this	have	to	do	with	code?

• Same	logic	applies

def recurMul(a, b):
if b == 1:

return a
else:

return a + recurMul(a, b-1)

• Base	case,	we	can	show	that	recurMul must	return	correct	
answer	

• For	recursive	case,	we	can	assume	that	recurMul correctly	
returns	an	answer	for	problems	of	size	smaller	than	b,	then	
by	the	addition	step,	it	must	also	return	a	correct	answer	
for	problem	of	size	b	

• Thus	by	induction,	code	correctly	returns	answer
19

Sum	digits	of	a	number

20

Sum Digits Without a While Statement

6

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Verify	the	correctness	of	this	recursive	definition.

Some	observations

• Each	recursive	call	to	a	function	creates	its	
own	environment,	with	local	scoping	of	
variables	

• Bindings	for	variable	in	each	frame	distinct,	
and	not	changed	by	recursive	call	

• Flow	of	control	will	pass	back	to	earlier	frame	
once	function	call	returns	value	

21

The	“classic”	recursive	problem

• Factorial
n! =	n	*	(n-1)	*	...	*	1	

=					1																	 if	n	=	0	
n	*	(n-1)! otherwise

22

Recursive)version)

• An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
))

=)a)+)a)+)…)+)a)
))

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

Recursion	in	Environment	Diagrams

23

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

Recursion	in	Environment	Diagrams

24

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

Recursion	in	Environment	Diagrams

25

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times

Recursion	in	Environment	Diagrams

26

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call

Recursion	in	Environment	Diagrams

27

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call	

• What	n	evaluates	to	
depends	upon	the	current	environment

Recursion	in	Environment	Diagrams

28

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call	

• What	n	evaluates	to	
depends	upon	the	current	environment

• Each	call	to	fact	solves	a	simpler	problem	
than	the	last:	smaller	n

Iteration	vs	Recursion

29

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

Iteration	vs	Recursion

30

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

10

Iteration	vs	Recursion

31

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

10

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

Recursion	on	non-numerics

• How	could	we	check	whether	a	string	of	
characters	is	a	palindrome,	i.e.,	reads	the	
same	forwards	and	backwards	
– “Able	was	I	ere	I	saw	Elba”	– attributed	to	
Napolean

– “Are	we	not	drawn	onward,	we	few,	drawn	
onward	to	new	era?”	

– “Ey Edip Adana’da pide ye”

32

How	to	we	solve	this	recursive?

• First,	convert	the	string	to	just	characters,	by	
stripping	out	punctuation,	and	converting	
upper	case	to	lower	case	

• Then	
– Base	case:	a	string	of	length	0	or	1	is	a	palindrome	
– Recursive	case:	
• If	first	character	matches	last	character,	then	is	a	
palindrome	if	middle	section	is	a	palindrome	

33

Example

• ‘Able	was	I	ere	I	saw	Elba’à
‘ablewasiereisawleba’	

• isPalindrome(‘ablewasiereisawleba’)	is	same	
as	
– ‘a’	==	‘a’	and	isPalindrome(‘blewasiereisawleb’)	

34

Palindrome	or	not?
def toChars(s):

s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

def isPalindrome(s):
return isPal(toChars(s)) 35

Divide	and	conquer

• This	is	an	example	of	a	“divide	and	conquer”	
algorithm	
– Solve	a	hard	problem	by	breaking	it	into	a	set	of	
sub-problems	such	that:	

– Sub-problems	are	easier	to	solve	than	the	original	
– Solutions	of	the	sub-problems	can	be	combined	to	
solve	the	original	

36

Global	variables

• Suppose	we	wanted	to	count	the	number	of	
times	fib	calls	itself	recursively	

• Can	do	this	using	a	global	variable	
• So	far,	all	functions	communicate	with	their	
environment	through	their	parameters	and	
return	values	

• But,	(though	a	bit	dangerous),	can	declare	a	
variable	to	be	global	– means	name	is	defined	at	
the	outermost	scope	of	the	program,	rather	than	
scope	of	function	in	which	appears	

37

Example
def fibMetered(x):

global numCalls
numCalls += 1
if x == 0 or x == 1:

return 1
else:

return fibMetered(x-1) + fibMetered(x-2)

def testFib(n):
for i in range(n+1):

global numCalls
numCalls = 0
print('fib of ' + str(i) + ' = ' + str(fibMetered(i)))
print('fib called ' + str(numCalls) + ' times')

38

Global	variables

• Use	with	care!!	
• Destroy	locality	of	code	
• Since	can	be	modified	or	read	in	a	wide	range	
of	places,	can	be	easy	to	break	locality	and	
introduce	bugs!!	

39

Mutual	recursion

• Mutual	recursion is	a	form	of	recursion where	
two	functions	or	data	types	are defined in	
terms	of	each	other.

40

The	Luhn Algorithm
• A	simple	checksum	formula	used	to	validate	a	variety	of	identification	

numbers,	such	as	credit	card	numbers,	IMEI	numbers,	etc.

41

The	Luhn Algorithm
• From	Wikipedia:	http://en.wikipedia.org/wiki/Luhn_algorithm
• First:	From	the	rightmost	digit,	which	is	the	check	digit,	moving	left,	

double	the	value	of	every	second	digit;	if	product	of	this	doubling	
operation	is	greater	than	9	(e.g.,	7	*	2	=	14),	then	sum	the	digits	of	the	
products	(e.g.,	10:	1	+	0	=	1,	14:	1	+	4	=	5)	

• Second:	Take	the	sum	of	all	the	digits

• The	Luhn sum	of	a	valid	credit	card	number	is	a	multiple	of	10	

42

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3 = 30

The	Luhn Algorithm
def luhn_sum(n):

“""Return the digit sum of n computed by the Luhn algorithm"""
if n < 10:

return n
else:

all_but_last, last = split(n)
return luhn_sum_double(all_but_last) + last

def luhn_sum_double(n):
"""Return the Luhn sum of n, doubling the last digit."""
all_but_last, last = split(n)
luhn_digit = sum_digits(2 * last)
if n < 10:

return luhn_digit
else:

return luhn_sum(all_but_last) + luhn_digit

43

Tree	Recursion

• Tree-shaped	processes	arise	whenever	executing	the	
body	of	a	recursive	function	makes	more	than	one	
recursive	call.

44

Tree	Recursion
• Fibonacci	numbers	
• Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge	
– Newborn	pair	of	rabbits	(one	female,	one	male)	are	put	in	
a	pen	

– Rabbits	mate	at	age	of	one	month	
– Rabbits	have	a	one	month	gestation	period	
– Assume	rabbits	never	die,	that	female	always	produces	
one	new	pair	(one	male,	one	female)	every	month	from	its	
second	month	on.	

– How	many	female	rabbits	are	there	at	the	end	of	one	
year?

45

Fibonacci
• After	one	month	(call	it	0)	– 1	female	
• After	second	month	– still	1	female	

(now	pregnant)	
• After	third	month	– two	females,	one	

pregnant,	one	not	
• In	general,	females(n)	=	females(n-1)	+	

females(n-2)	
– Every	female	alive	at	month	n-2	will	

produce	one	female	in	month	n;	
– These	can	be	added	those	alive	in	month	

n-1	to	get	total	alive	in	month	n	

46

Fibonacci*
•  AEer*one*month*(call*it*0)*–*1*female*
•  AEer*second*month*–*s0ll*1*female*

(now*pregnant)*
•  AEer*third*month*–*two*females,*one*

pregnant,*one*not*
•  In*general,*females(n)*=*females(nK1)*+*

females(nK2)*
–  Every*female*alive*at*month*nK2*will*
produce*one*female*in*month*n;*

–  These*can*be*added*those*alive*in*month*
nK1*to*get*total*alive*in*month*n*

Month* Females*

0* 1*

1* 1*

2* 2*

3* 3*

4* 5*

5* 8*

6* 13*

Fibonacci

• Base	cases:	
– Females(0)	=	1
– Females(1)	=	1	

• Recursive	case
– Females(n)	=	Females(n-1)	+	Females(n-2)	

47

Fibonacci	
def fib(n):

"""assumes n an int >= 0
returns Fibonacci of n"""
assert type(n) == int and n >= 0
if n == 0:

return 1
elif n == 1:

return 1
else:

return fib(n-2) + fib(n-1)

48

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

49

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

50

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

51

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

52

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

53

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

54

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

55

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	

56

Pitfalls	of	Recursion

• With	recursion,	you	can	compose	compact	and	
elegant	programs	that	fail	spectacularly	at	runtime.

• Missing	base	case
• No	guarentee of	convergence
• Excessive	space	requirements
• Excessive	recomputation

57

Missing	base	case
def H(n):

return H(n-1) + 1.0/n;

• This	recursive	function	is	supposed	to	compute	
Harmonic	numbers,	but	is	missing	a	base	case.

• If	you	call	this	function,	it	will	repeatedly	call	itself	
and	never	return.

58

No	guarantee	of	convergence
def H(n):

if n == 1:
return 1.0

return H(n) + 1.0/n

• This	recursive	function	will	go	into	an	infinite	recursive	
loop	if	it	is	invoked	with	an	argument	n	having	any	value	
other	than	1.

• Another	common	problem	is	to	include	within	a	recursive	
function	a	recursive	call	to	solve	a	subproblem that	is	not	
smaller.

59

Excessive	space	requirements
• Python	needs	to	keep	track	of	each	recursive	call	to	implement	

the	function	abstraction	as	expected.	
• If	a	function	calls	itself	recursively	an	excessive	number	of	times	

before	returning,	the	space	required	by	Python	for	this	task	may	
be	prohibitive.	

def H(n):
if n == 0:

return 0.0
return H(n-1) + 1.0/n

• This	recursive	function	correctly	computes	the	nth	harmonic	
number.	

• However,	we	cannot	use	it	for	large n because	the	recursive	
depth	is	proportional	to n,	and	this	creates	a StackOverflowError.

60

Excessive	recomputation
• A simple	recursive	program	might	require	exponential	time	

(unnecessarily),	due	to	excessive	recomputation.
• For	example,	fib	is	called	on	the	same	argument	multiple	

times	

61

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times

12

Computational	Complexity	of	Recursive	
Algorithms:	Linear	Complexity

• Complexity	can	depend	on	number	of	recursive	calls	

def fact(n):
if n == 1:

return 1
else:

return n*fact(n-1)

• Number	of	recursive	calls?
– Fact(n),	then	fact(n-1),	etc.	until	get	to	fact(1)	
– Complexity	of	each	call	is	constant
– O(n)	

62

Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity

def genSubsets(L):
res = []
if len(L) == 0:

return [[]] #list of empty list
smaller = genSubsets(L[:-1])
get all subsets without last element
extra = L[-1:]
create a list of just last element
new = []
for small in smaller:

new.append(small+extra)
for all smaller solutions, add one with last element
return smaller+new
combine those with last element and those without

63

Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity

64

• Assuming	append	is	
constant	time	

• Time	includes	time	to	
solve	smaller	
problem,	plus	time	
needed	to	make	a	
copy	of	all	elements	
in	smaller	problem	

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity

65

• But	important	to	
think	about	size	of	
smaller	

• Know	that	for	a	set	of	
size	k	there	are	2k
cases	

• So	to	solve	need	2n-1 +	
2n-2 +	...	+20 steps	

• Math	tells	us	this	is	
O(2n)	

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

Recursive	Graphics
• Simple	recursive	drawing	schemes	can	lead	to	pictures	that	

are	remarkably	intricate	– Fractals
• For	example,	an H-tree	of	order	n is	defined	as	follows:	

– The	base	case	is	null	for n =	0.	
– The	reduction	step	is	to	draw,	within	the	unit	square	three	lines	in	the	

shape	of	the	letter	H	four	H-trees	of	order n-1.
– One	connected	to	each	tip	of	the	H	with	the	additional	provisos	that	

the	H-trees	of	order n-1	are	centered	in	the	four	quadrants	of	the	
square,	halved	in	size.	

66

More	recursive	graphics

67

• Sierpinski triangles

• Recursive	trees

