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Recursive	functions

• A	function	is	called	recursive if	the	body	of	that	
function	calls	itself,	either	directly	or	indirectly.

• Implication: Executing	the	body	of	a	recursive	function	
may	require	applying	that	function	
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Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, 
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)
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Iterative	algorithms

• Looping	constructs	(e.g.	while	or	for	loops)	
lead	naturally	to	iterative	algorithms	

• Can	conceptualize	as	capturing	computation	
in	a	set	of	“state	variables”	which	update	on	
each	iteration	through	the	loop	
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Iterative	multiplication	by	successive	
additions

• Imagine	we	want	to	perform	multiplication	by	
successive	additions:	
– To	multiply	a	by	b,	add	a	to	itself	b	times	

• State	variables:
– i – iteration	number;	starts	at	b
– result	– current	value	of	computation;	starts	at	0	

• Update	rules
– i←i -1;	stop	when	0
– result ←	result	+	a	
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Iterative	multiplication	by	successive	
additions

def iterMul(a, b): 
result = 0 
while b > 0: 

result += a 
b -= 1 

return result 
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Recursive	version

• An	alternative	is	to	think	of	this	computation	
as:

a	*	b	=	a	+	a	+	...	+	a	

=	a	+	a	+	...	+	a	

=	a	+	a	*	(b	– 1)	
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Recursion

• This	is	an	instance	of	a	recursive	algorithm	
– Reduce	a	problem	to	a	simpler	(or	smaller)	version	of	
the	same	problem,	plus	some	simple	computations	
• Recursive	step	

– Keep	reducing	until	reach	a	simple	case	that	can	be	
solved	directly	
• Base	case

• a*b=a;	if	b=1	(Base	case)
• a	*	b	=	a	+	a	*	(b-1);	otherwise	(Recursive	case)	
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Recursive	multiplication
def recurMul(a,b): 

if b == 1: 
return a 

else: 
return a + recurMul(a,b-1) 
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Let’s	try	it	out
def recurMul(a,b): 

if b == 1: 
return a 

else: 
return a + 

recurMul(a,b-1) 
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The	Anatomy	of	a	Recursive	Function

15

def recurMul(a,b): 
if b == 1: 

return a 
else: 
return a + recurMul(a,b-1)

• The	def statement	header	is	similar	to	other	
functions

• Conditional	statements	check	for	base	cases
• Base	cases	are	evaluated	without	recursive	calls
• Recursive	cases	are	evaluated	with	recursive	calls	



Inductive	reasoning

• How	do	we	know	that	our	recursive	code	will	
work?	

• iterMul terminates	because	b	is	initially	positive,	
and	decrease	by	1	each	time	around	loop;	thus	
must	eventually	become	less	than	1	

• recurMul called	with	b	=	1	has	no	recursive	call	
and	stops	

• recurMul called	with	b	>	1	makes	a	recursive	call	
with	a	smaller	version	of	b;	must	eventually	reach	
call	with	b	=	1	
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Mathematical	induction

• To	prove	a	statement	indexed	on	integers	is	
true	for	all	values	of	n:	
– Prove	it	is	true	when	n	is	smallest	value	(e.g.	n	=	0	
or	n	=	1)	

– Then	prove	that	if	it	is	true	for	an	arbitrary	value	
of	n,	one	can	show	that	it	must	be	true	for	n+1	
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Example

• 0+1+2+3+...+n=(n(n+1))/2	
• Proof	
– If	n	=	0,	then	LHS	is	0	and	RHS	is	0*1/2	=	0,	so	true	
– Assume	true	for	some	k,	then	need	to	show	that
• 0	+	1	+	2	+	...	+	k	+	(k+1)	=	((k+1)(k+2))/2
• LHS	is	k(k+1)/2	+	(k+1)	by	assumption	that	property	
holds	for	problem	of	size	k
• This	becomes,	by	algebra,	((k+1)(k+2))/2

– Hence	expression	holds	for	all	n	>=	0	

18



What	does	this	have	to	do	with	code?

• Same	logic	applies

def recurMul(a, b): 
if b == 1: 

return a 
else: 

return a + recurMul(a, b-1)

• Base	case,	we	can	show	that	recurMul must	return	correct	
answer	

• For	recursive	case,	we	can	assume	that	recurMul correctly	
returns	an	answer	for	problems	of	size	smaller	than	b,	then	
by	the	addition	step,	it	must	also	return	a	correct	answer	
for	problem	of	size	b	

• Thus	by	induction,	code	correctly	returns	answer
19



Sum	digits	of	a	number

20

Sum Digits Without a While Statement

6

def split(n):

    """Split positive n into all but its last digit and its last digit."""

    return n // 10, n % 10

def sum_digits(n):

    """Return the sum of the digits of positive integer n."""

    if n < 10:

        return n

    else:

        all_but_last, last = split(n)

        return sum_digits(all_but_last) + last

Verify	the	correctness	of	this	recursive	definition.



Some	observations

• Each	recursive	call	to	a	function	creates	its	
own	environment,	with	local	scoping	of	
variables	

• Bindings	for	variable	in	each	frame	distinct,	
and	not	changed	by	recursive	call	

• Flow	of	control	will	pass	back	to	earlier	frame	
once	function	call	returns	value	
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The	“classic”	recursive	problem

• Factorial
n! =	n	*	(n-1)	*	...	*	1	

=					1																	 if	n	=	0	
n	*	(n-1)! otherwise
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Recursion	in	Environment	Diagrams
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Recursion	in	Environment	Diagrams
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Recursion	in	Environment	Diagrams
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Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call	

• What	n	evaluates	to	
depends	upon	the	current	environment

• Each	call	to	fact	solves	a	simpler	problem	
than	the	last:	smaller	n



Iteration	vs	Recursion
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4! = 4 · 3 · 2 · 1 = 24

n! =
nY
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(
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n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total

def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:
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Iteration	vs	Recursion
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Recursion	on	non-numerics

• How	could	we	check	whether	a	string	of	
characters	is	a	palindrome,	i.e.,	reads	the	
same	forwards	and	backwards	
– “Able	was	I	ere	I	saw	Elba”	– attributed	to	
Napolean

– “Are	we	not	drawn	onward,	we	few,	drawn	
onward	to	new	era?”	

– “Ey Edip Adana’da pide ye”
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How	to	we	solve	this	recursive?

• First,	convert	the	string	to	just	characters,	by	
stripping	out	punctuation,	and	converting	
upper	case	to	lower	case	

• Then	
– Base	case:	a	string	of	length	0	or	1	is	a	palindrome	
– Recursive	case:	
• If	first	character	matches	last	character,	then	is	a	
palindrome	if	middle	section	is	a	palindrome	

33



Example

• ‘Able	was	I	ere	I	saw	Elba’à
‘ablewasiereisawleba’	

• isPalindrome(‘ablewasiereisawleba’)	is	same	
as	
– ‘a’	==	‘a’	and	isPalindrome(‘blewasiereisawleb’)	
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Palindrome	or	not?
def toChars(s): 

s = s.lower() 
ans = '' 
for c in s: 

if c in 'abcdefghijklmnopqrstuvwxyz': 
ans = ans + c 

return ans

def isPal(s): 
if len(s) <= 1: 

return True 
else: 

return s[0] == s[-1] and isPal(s[1:-1])

def isPalindrome(s):
return isPal(toChars(s)) 35



Divide	and	conquer

• This	is	an	example	of	a	“divide	and	conquer”	
algorithm	
– Solve	a	hard	problem	by	breaking	it	into	a	set	of	
sub-problems	such	that:	

– Sub-problems	are	easier	to	solve	than	the	original	
– Solutions	of	the	sub-problems	can	be	combined	to	
solve	the	original	
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Global	variables

• Suppose	we	wanted	to	count	the	number	of	
times	fib	calls	itself	recursively	

• Can	do	this	using	a	global	variable	
• So	far,	all	functions	communicate	with	their	
environment	through	their	parameters	and	
return	values	

• But,	(though	a	bit	dangerous),	can	declare	a	
variable	to	be	global	– means	name	is	defined	at	
the	outermost	scope	of	the	program,	rather	than	
scope	of	function	in	which	appears	
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Example
def fibMetered(x): 

global numCalls
numCalls += 1 
if x == 0 or x == 1: 

return 1 
else: 

return fibMetered(x-1) + fibMetered(x-2) 

def testFib(n): 
for i in range(n+1): 

global numCalls
numCalls = 0 
print('fib of ' + str(i) + ' = ' + str(fibMetered(i))) 
print('fib called ' + str(numCalls) + ' times') 

38



Global	variables

• Use	with	care!!	
• Destroy	locality	of	code	
• Since	can	be	modified	or	read	in	a	wide	range	
of	places,	can	be	easy	to	break	locality	and	
introduce	bugs!!	
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Mutual	recursion

• Mutual	recursion is	a	form	of	recursion where	
two	functions	or	data	types	are defined in	
terms	of	each	other.

40



The	Luhn Algorithm
• A	simple	checksum	formula	used	to	validate	a	variety	of	identification	

numbers,	such	as	credit	card	numbers,	IMEI	numbers,	etc.
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The	Luhn Algorithm
• From	Wikipedia:	http://en.wikipedia.org/wiki/Luhn_algorithm
• First:	From	the	rightmost	digit,	which	is	the	check	digit,	moving	left,	

double	the	value	of	every	second	digit;	if	product	of	this	doubling	
operation	is	greater	than	9	(e.g.,	7	*	2	=	14),	then	sum	the	digits	of	the	
products	(e.g.,	10:	1	+	0	=	1,	14:	1	+	4	=	5)	

• Second:	Take	the	sum	of	all	the	digits

• The	Luhn sum	of	a	valid	credit	card	number	is	a	multiple	of	10	

42

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value 
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3 = 30



The	Luhn Algorithm
def luhn_sum(n):

“""Return the digit sum of n computed by the Luhn algorithm"""    
if n < 10:

return n
else:

all_but_last, last = split(n)
return luhn_sum_double(all_but_last) + last

def luhn_sum_double(n):    
"""Return the Luhn sum of n, doubling the last digit."""    
all_but_last, last = split(n)    
luhn_digit = sum_digits(2 * last)    
if n < 10:        

return luhn_digit
else:       

return luhn_sum(all_but_last) + luhn_digit
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Tree	Recursion

• Tree-shaped	processes	arise	whenever	executing	the	
body	of	a	recursive	function	makes	more	than	one	
recursive	call.
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Tree	Recursion
• Fibonacci	numbers	
• Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge	
– Newborn	pair	of	rabbits	(one	female,	one	male)	are	put	in	
a	pen	

– Rabbits	mate	at	age	of	one	month	
– Rabbits	have	a	one	month	gestation	period	
– Assume	rabbits	never	die,	that	female	always	produces	
one	new	pair	(one	male,	one	female)	every	month	from	its	
second	month	on.	

– How	many	female	rabbits	are	there	at	the	end	of	one	
year?
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Fibonacci
• After	one	month	(call	it	0)	– 1	female	
• After	second	month	– still	1	female	

(now	pregnant)	
• After	third	month	– two	females,	one	

pregnant,	one	not	
• In	general,	females(n)	=	females(n-1)	+	

females(n-2)	
– Every	female	alive	at	month	n-2	will	

produce	one	female	in	month	n;	
– These	can	be	added	those	alive	in	month	

n-1	to	get	total	alive	in	month	n	

46
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•  AEer*second*month*–*s0ll*1*female*

(now*pregnant)*
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nK1*to*get*total*alive*in*month*n*

Month* Females*

0* 1*

1* 1*

2* 2*

3* 3*

4* 5*

5* 8*

6* 13*



Fibonacci

• Base	cases:	
– Females(0)	=	1
– Females(1)	=	1	

• Recursive	case
– Females(n)	=	Females(n-1)	+	Females(n-2)	

47



Fibonacci	
def fib(n):

"""assumes n an int >= 0 
returns Fibonacci of n""" 
assert type(n) == int and n >= 0 
if n == 0: 

return 1 
elif n == 1: 

return 1 
else: 

return fib(n-2) + fib(n-1)
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A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	
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A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	
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A Tree-Recursive Process

The computational process of fib evolves into a tree structure
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A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	
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A	tree-recursive	process
• The	computational	process	of	fib	evolves	into	a	tree	structure	
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Pitfalls	of	Recursion

• With	recursion,	you	can	compose	compact	and	
elegant	programs	that	fail	spectacularly	at	runtime.

• Missing	base	case
• No	guarentee of	convergence
• Excessive	space	requirements
• Excessive	recomputation

57



Missing	base	case
def H(n): 

return H(n-1) + 1.0/n;

• This	recursive	function	is	supposed	to	compute	
Harmonic	numbers,	but	is	missing	a	base	case.

• If	you	call	this	function,	it	will	repeatedly	call	itself	
and	never	return.

58



No	guarantee	of	convergence
def H(n): 

if n == 1: 
return 1.0 

return H(n) + 1.0/n

• This	recursive	function	will	go	into	an	infinite	recursive	
loop	if	it	is	invoked	with	an	argument	n	having	any	value	
other	than	1.

• Another	common	problem	is	to	include	within	a	recursive	
function	a	recursive	call	to	solve	a	subproblem that	is	not	
smaller.
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Excessive	space	requirements
• Python	needs	to	keep	track	of	each	recursive	call	to	implement	

the	function	abstraction	as	expected.	
• If	a	function	calls	itself	recursively	an	excessive	number	of	times	

before	returning,	the	space	required	by	Python	for	this	task	may	
be	prohibitive.	

def H(n): 
if n == 0: 

return 0.0 
return H(n-1) + 1.0/n

• This	recursive	function	correctly	computes	the	nth	harmonic	
number.	

• However,	we	cannot	use	it	for	large n because	the	recursive	
depth	is	proportional	to n,	and	this	creates	a StackOverflowError.
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Excessive	recomputation
• A simple	recursive	program	might	require	exponential	time	

(unnecessarily),	due	to	excessive	recomputation.
• For	example,	fib	is	called	on	the	same	argument	multiple	

times	
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Repetition in Tree-Recursive Computation
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This process is highly repetitive; fib is called on the same argument multiple times
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Computational	Complexity	of	Recursive	
Algorithms:	Linear	Complexity

• Complexity	can	depend	on	number	of	recursive	calls	

def fact(n): 
if n == 1: 

return 1 
else: 

return n*fact(n-1)  

• Number	of	recursive	calls?
– Fact(n),	then	fact(n-1),	etc.	until	get	to	fact(1)	
– Complexity	of	each	call	is	constant
– O(n)	
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Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity

def genSubsets(L): 
res = [] 
if len(L) == 0:     

return [[]] #list of empty list  
smaller = genSubsets(L[:-1]) 
# get all subsets without last element 
extra = L[-1:] 
# create a list of just last element 
new = [] 
for small in smaller: 

new.append(small+extra) 
# for all smaller solutions, add one with last element 
return smaller+new
# combine those with last element and those without  
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Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity

64

• Assuming	append	is	
constant	time	

• Time	includes	time	to	
solve	smaller	
problem,	plus	time	
needed	to	make	a	
copy	of	all	elements	
in	smaller	problem	

def genSubsets(L): 
res = [] 
if len(L) == 0:     

return [[]]  
smaller = genSubsets(L[:-1]) 
extra = L[-1:] 
new = [] 
for small in smaller: 

new.append(small+extra) 
return smaller+new



Computational	Complexity	of	Recursive	
Algorithms:	Exponential	Complexity
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• But	important	to	
think	about	size	of	
smaller	

• Know	that	for	a	set	of	
size	k	there	are	2k
cases	

• So	to	solve	need	2n-1 +	
2n-2 +	...	+20 steps	

• Math	tells	us	this	is	
O(2n)	

def genSubsets(L): 
res = [] 
if len(L) == 0:     

return [[]]  
smaller = genSubsets(L[:-1]) 
extra = L[-1:] 
new = [] 
for small in smaller: 

new.append(small+extra) 
return smaller+new



Recursive	Graphics
• Simple	recursive	drawing	schemes	can	lead	to	pictures	that	

are	remarkably	intricate	– Fractals
• For	example,	an H-tree	of	order	n is	defined	as	follows:	

– The	base	case	is	null	for n =	0.	
– The	reduction	step	is	to	draw,	within	the	unit	square	three	lines	in	the	

shape	of	the	letter	H	four	H-trees	of	order n-1.
– One	connected	to	each	tip	of	the	H	with	the	additional	provisos	that	

the	H-trees	of	order n-1	are	centered	in	the	four	quadrants	of	the	
square,	halved	in	size.	
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More	recursive	graphics

67

• Sierpinski triangles

• Recursive	trees


