Recursion

BBM 101 - Introduction to Programming I
Hacettepe University
Fall 2016
Fuat Akal, Aykut Erdem, Erkut Erdem

Recursive functions

• A function is called recursive if the body of that function calls itself, either directly or indirectly.
• Implication: Executing the body of a recursive function may require applying that function

Iterative algorithms

• Looping constructs (e.g. while or for loops) lead naturally to iterative algorithms
• Can conceptualize as capturing computation in a set of “state variables” which update on each iteration through the loop

Iterative multiplication by successive additions

• Imagine we want to perform multiplication by successive additions:
 – To multiply a by b, add a to itself b times
• State variables:
 – i – iteration number; starts at 0
 – result – current value of computation; starts at 0
• Update rules
 – i←i -1; stop when 0
 – result ← result + a
Iterative multiplication by successive additions

def iterMul(a, b):
 result = 0
 while b > 0:
 result += a
 b -= 1
 return result

Recursive version

• An alternative is to think of this computation as:

\[
a \times b = a + a + \ldots + a
\]

\[
= a + a + \ldots + a
\]

\[
= a + a \times (b - 1)
\]

Recursion

• This is an instance of a recursive algorithm
 – Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations
 • Recursive step
 – Keep reducing until reach a simple case that can be solved directly
 • Base case
• \(a \times b = a; \text{ if } b=1\) (Base case)
• \(a \times b = a + a \times (b-1)\); otherwise (Recursive case)

Recursive multiplication

def recurMul(a,b):
 if b == 1:
 return a
 else:
 return a + recurMul(a,b-1)
Let's try it out

def recurMul(a, b):
 if b == 1:
 return a
 else:
 return a + recurMul(a, b-1)

recurMul(2,3)
Let’s try it out

```python
def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)
```

`recurMul(2, 3)`

The Anatomy of a Recursive Function

- The **def statement header** is similar to other functions.
- Conditional statements check for **base cases**.
- Base cases are evaluated **without recursive calls**.
- Recursive cases are evaluated **with recursive calls**.

```python
def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)
```

Inductive reasoning

- How do we know that our recursive code will work?
- `iterMul` terminates because `b` is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1.
- `recurMul` called with `b = 1` has no recursive call and stops.
- `recurMul` called with `b > 1` makes a recursive call with a smaller version of `b`; must eventually reach call with `b = 1`.
Mathematical induction

• To prove a statement indexed on integers is true for all values of n:
 – Prove it is true when n is smallest value (e.g. n = 0 or n = 1)
 – Then prove that if it is true for an arbitrary value of n, one can show that it must be true for n+1

Example

• $0+1+2+3+...+n=(n(n+1))/2$
• Proof
 – If $n = 0$, then LHS is 0 and RHS is $0*1/2 = 0$, so true
 – Assume true for some k, then need to show that
 • $0 + 1 + 2 + ... + k + (k+1) = ((k+1)(k+2))/2$
 • LHS is $k(k+1)/2 + (k+1)$ by assumption that property holds for problem of size k
 • This becomes, by algebra, $((k+1)(k+2))/2$
 – Hence expression holds for all $n >= 0$

What does this have to do with code?

• Same logic applies

 def recurMul(a, b):
 if b == 1:
 return a
 else:
 return a + recurMul(a, b-1)

• Base case, we can show that recurMul must return correct answer
• For recursive case, we can assume that recurMul correctly returns an answer for problems of size smaller than b, then by the addition step, it must also return a correct answer for problem of size b
• Thus by induction, code correctly returns answer

Sum digits of a number

 def split(n):
 """Split positive n into all but its last digit and its last digit."
 return n // 10, n % 10

 def sum_digits(n):
 """Return the sum of the digits of positive integer n."
 if n < 10:
 return n
 else:
 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last

Verify the correctness of this recursive definition.
Some observations

- Each recursive call to a function creates its own environment, with local scoping of variables
- Bindings for variable in each frame distinct, and not changed by recursive call
- Flow of control will pass back to earlier frame once function call returns value

The “classic” recursive problem

- Factorial
 \[n! = n \times (n-1) \times \ldots \times 1 \]
 \[= \begin{cases}
 1 & \text{if } n = 0 \\
 n \times (n-1)! & \text{otherwise}
 \end{cases} \]

Recursion in Environment Diagrams

```python
1 def fact(n):
2   if n == 0:
3       return 1
4   else:
5       return n * fact(n-1)
6
7 fact(3)
```

Recursion in Environment Diagrams

(Demo)
Recursion in Environment Diagrams

The same function `fact` is called multiple times
- Different frames keep track of the different arguments in each call
- What `n` evaluates to depends upon the current environment
Iteration vs Recursion

4! = 4 · 3 · 2 · 1 = 24

Using while:

```python
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total * k, k + 1
    return total
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names: \(n, \text{total}, k, \text{fact_iter} \)

Iteration vs Recursion

4! = 4 · 3 · 2 · 1 = 24

Using recursion:

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n - 1)
```

Math:

\[n! = \prod_{k=1}^{n} k \]

Names: \(n, \text{fact} \)

Recursion on non-numeric

- How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards
 - “Able was I ere I saw Elba” – attributed to Napoleon
 - “Are we not drawn onward, we few, drawn onward to new era?”
 - “Ey Edip Adana’da pide ye”
How to we solve this recursive?

• First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
• Then
 – Base case: a string of length 0 or 1 is a palindrome
 – Recursive case:
 • If first character matches last character, then is a palindrome if middle section is a palindrome

Example

• ‘Able was I ere I saw Elba’ → ‘ablewasiereisawleba’
• isPalindrome(‘ablewasiereisawleba’) is same as
 – ‘a’ == ‘a’ and isPalindrome(‘blewasiereisawleb’)

Palindrome or not?

def toChars(s):
 s = s.lower()
 ans = ''
 for c in s:
 if c in 'abcdefghijklmnopqrstuvwxyz':
 ans = ans + c
 return ans

def isPal(s):
 if len(s) <= 1:
 return True
 else:
 return s[0] == s[-1] and isPal(s[1:-1])

def isPalindrome(s):
 return isPal(toChars(s))

Divide and conquer

• This is an example of a “divide and conquer” algorithm
 – Solve a hard problem by breaking it into a set of sub-problems such that:
 – Sub-problems are easier to solve than the original
 – Solutions of the sub-problems can be combined to solve the original
Global variables

• Suppose we wanted to count the number of times fib calls itself recursively
• Can do this using a global variable
• So far, all functions communicate with their environment through their parameters and return values
• But, (though a bit dangerous), can declare a variable to be global – means name is defined at the outermost scope of the program, rather than scope of function in which appears

Example

```python
def fibMetered(x):
    global numCalls
    numCalls += 1
    if x == 0 or x == 1:
        return 1
    else:
        return fibMetered(x-1) + fibMetered(x-2)

def testFib(n):
    for i in range(n+1):
        global numCalls
        numCalls = 0
        print('fib of ', str(i), ' = ', str(fibMetered(i)))
        print('fib called ', str(numCalls), ' times')
```

Global variables

• Use with care!!
• Destroy locality of code
• Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!

Mutual recursion

• Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.
The Luhn Algorithm

- A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.

```
def luhn_sum(n):
    """Return the digit sum of n computed by the Luhn algorithm""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return luhn_sum_double(all_but_last) + last

def luhn_sum_double(n):
    """Return the Luhn sum of n, doubling the last digit.""
    all_but_last, last = split(n)
    luhn_digit = sum_digits(2 * last)
    if n < 10:
        return luhn_digit
    else:
        return luhn_sum(all_but_last) + luhn_digit
```

The Luhn Algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)
- Second: Take the sum of all the digits

```
1 3 8 7 4 3
2 3 1+6=7 7 8 3
```

- The Luhn sum of a valid credit card number is a multiple of 10

Tree Recursion

- Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.
Tree Recursion

- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
 - Newborn pair of rabbits (one female, one male) are put in a pen
 - Rabbits mate at age of one month
 - Rabbits have a one month gestation period
 - Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
 - How many female rabbits are there at the end of one year?

Fibonacci

- Base cases:
 - Females(0) = 1
 - Females(1) = 1
- Recursive case
 - Females(n) = Females(n-1) + Females(n-2)

Fibonacci

- After one month (call it 0) – 1 female
- After second month – still 1 female (now pregnant)
- After third month – two females, one pregnant, one not
- In general, females(n) = females(n-1) + females(n-2)
 - Every female alive at month n-2 will produce one female in month n;
 - These can be added those alive in month n-1 to get total alive in month n

<table>
<thead>
<tr>
<th>Month</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

Fibonacci

```python
def fib(n):
    """assumes n an int >= 0
    returns Fibonacci of n""
    assert type(n) == int and n >= 0
    if n == 0:
        return 1
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```
A tree-recursive process

- The computational process of fib evolves into a tree structure

A tree-recursive process

- The computational process of fib evolves into a tree structure

fib(5)

A tree-recursive process

- The computational process of fib evolves into a tree structure

fib(5)

A tree-recursive process

- The computational process of fib evolves into a tree structure

fib(3)

A tree-recursive process

- The computational process of fib evolves into a tree structure

fib(3) fib(4)
A tree-recursive process

- The computational process of fib evolves into a tree structure

```
fib(5)
   /  \
  /    \  
/      /   
|   fib(3)  |  
|   |       |   |
|   fib(1)  fib(2) |
  /  \
  /    \  
/      /   
|   fib(0)  fib(1) |
```

A tree-recursive process

- The computational process of fib evolves into a tree structure

```
fib(5)
   /  \
  /    \  
/      /   
|   fib(3)  |  
|   |       |   |
|   fib(1)  fib(2) |
  /  \
  /    \  
/      /   
|   fib(0)  fib(1) |
```

A tree-recursive process

- The computational process of fib evolves into a tree structure

```
fib(5)
   /  \
  /    \  
/      /   
|   fib(3)  |  
|   |       |   |
|   fib(1)  fib(2) |
  /  \
  /    \  
/      /   
|   fib(0)  fib(1) |
```

A tree-recursive process

- The computational process of fib evolves into a tree structure

```
fib(5)
   /  \
  /    \  
/      /   
|   fib(3)  |  
|   |       |   |
|   fib(1)  fib(2) |
  /  \
  /    \  
/      /   
|   fib(0)  fib(1) |
```
Pitfalls of Recursion

- With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
- Missing base case
- No guarantee of convergence
- Excessive space requirements
- Excessive recomputation

```
def H(n):
    return H(n-1) + 1.0/n;
```

- This recursive function is supposed to compute Harmonic numbers, but is missing a base case.
- If you call this function, it will repeatedly call itself and never return.

No guarantee of convergence

```
def H(n):
    if n == 1:
        return 1.0
    return H(n) + 1.0/n
```

- This recursive function will go into an infinite recursive loop if it is invoked with an argument n having any value other than 1.
- Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.

```
def H(n):
    if n == 0:
        return 0.0
    return H(n-1) + 1.0/n
```

- This recursive function correctly computes the nth harmonic number.
- However, we cannot use it for large n because the recursive depth is proportional to n, and this creates a StackOverflowError.

Excessive space requirements
Excessive recomputation

• A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
• For example, fib is called on the same argument multiple time

```
def fib(n):
    if n == 0:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```

This process is highly repetitive; fib is called on the same argument multiple times

Computational Complexity of Recursive Algorithms: Linear Complexity

• Complexity can depend on number of recursive calls

```
def fact(n):
    if n == 1:
        return 1
    else:
        return n*fact(n-1)
```

• Number of recursive calls?
 – Fact(n), then fact(n-1), etc. until get to fact(1)
 – Complexity of each call is constant
 – O(n)

Computational Complexity of Recursive Algorithms: Exponential Complexity

```
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]] # list of empty list
    smaller = genSubsets(L[:-1])
    extra = L[-1:]
    new = []
    for small in smaller:
        new.append(small+extra)
    return smaller+new
```

• Assuming append is constant time
• Time includes time to solve smaller problem, plus time needed to make a copy of all elements in smaller problem
Computational Complexity of Recursive Algorithms: Exponential Complexity

```python
def genSubsets(L):
    res = []
    if len(L) == 0:
        return [[]]
    smaller = genSubsets(L[:-1])
    extra = L[-1:]
    new = []
    for small in smaller:
        new.append(small + extra)
    return smaller + new
```

- But important to think about size of smaller
- Know that for a set of size k there are 2^k cases
- So to solve need $2^{n-1} + 2^{n-2} + ... + 2^0$ steps
- Math tells us this is $O(2^n)$

Recursive Graphics

- Simple recursive drawing schemes can lead to pictures that are remarkably intricate – Fractals
- For example, an H-tree of order n is defined as follows:
 - The base case is null for $n=0$.
 - The reduction step is to draw, within the unit square three lines in the shape of the letter H four H-trees of order $n-1$.
 - One connected to each tip of the H with the additional provisos that the H-trees of order $n-1$ are centered in the four quadrants of the square, halved in size.

More recursive graphics

- Sierpinski triangles

![Sierpinski triangles]

- Recursive trees

![Recursive trees]