
C	for	Python	Programmers

BBM	101	- Introduction	 to	Programming	 I

Hacettepe University	
Fall	2016

Fuat	Akal,	Aykut Erdem,	Erkut	Erdem

1Slides	 based	on	the	material	prepared	by	Carl	Burch	(Hendrix	College)	with	modifications	 by	Elizabeth	Patitsas (U	Toronto)

Today

• How	Python	&	C	are	similar
• How	Python	&	C	are	different
– C	fundamentals
– C	Examples

2

Creating	computer	programs

• Each	programming	language	provides	a	set	of	
primitive	operations	

• Each	programming	language	provides	mechanisms	
for	combining	primitives	to	form	more	complex,	but	
legal,	expressions	

• Each	programming	language	provides	mechanisms	
for	deducing	meanings	or	values	associated	with	
computations	or	expressions	

Slide	credit:	E.	Grimson,	 J.	Guttag and	C.	Terman

Recall	our	goal

• Learn	the	syntax	and	semantics	of	a	programming
language

• Learn	how	to	use	those	elements	to	translate	
“recipes”	for	solving	a	problem	into	a	form that	the	
computer	can	use	to	do the	work	for	us

• Computational	modes	of	thought	enable	us	to	use	a	
suite	of	methods	to	solve	problems

Slide	credit:	E.	Grimson,	 J.	Guttag and	C.	Terman

Recall:	Dimensions	of	a	PL
• Low-level	vs.	High-level
– Distinction	according	to	the	level	of	abstraction
– In	low-level	programming	languages	(e.g.	Assembly),	the	set	
of	instructions	used	in	computations	are	very	simple	(nearly	
at	machine	level)

– A	high-level	programming	language	(e.g.	C,	Java)	has	a	much	
richer	and	more	complex	set	of	primitives.

Recall:	Dimensions	of	a	PL
• General	vs.	Targeted
– Distinction	according	to	the	range	of	applications
– In	a	general	programming	language,	the	set	of	primitives	
support	a	broad	range	of	applications.

– A	targeted	programming	language aims	at	a	very	specific	set	
of	applications.
• e.g.,	MATLAB	(matrix	laboratory)	is	a	programming	language	
specifically	designed	for	numerical	computing	(matrix	and	vector	
operations)

Recall:	Dimensions	of	a	PL
• Interpreted	vs.	Compiled
– Distinction	according	to	how	the	source	code	is	executed
– In	interpreted	languages	(e.g.	Python),	the	source	code	is	
executed	directly	at	runtime	(by	the	interpreter).
• Interpreter	control	the	the	flow	of	the	program	by	going	through	
each	one	of	the	instructions.

– In	compiled	languages	(e.g.	C),	the	source	code	first	needs	
to	be	translated	to	an	object	code	(by	the	compiler)	before	
the	execution.

– More	later	today!

Recall:	Dimensions	of	a	PL
• Functional

• Treats	computation	as	the	evaluation	of	mathematical	functions	
(e.g.	Lisp,	Scheme,	Haskell,	etc.)

• Imperative
• describes	computation	in	terms	of	statements	that	change	a	program	
state	(e.g.	FORTRAN,	BASIC,	Pascal,	C,	etc.)

• Logical	(declarative)
• expresses	the	logic	of	a	computation	without	describing	its	control	flow	
(e.g.	Prolog)

• Object	oriented
• uses	"objects"	– data	structures	consisting	of	data	fields	and	methods	
together	with	their	interactions	– to	design	applications	and	computer	
programs	(e.g.	C++,	Java,	C#,	Python,	etc.)

C	(1973)

• Developed	by	Ken	Thompson	and	Dennis	Ritchie	at			
AT&T	Bell	Labs	for	use	on	the	UNIX	operating	system.		
– now	used	on	practically	every	operating	system	
– popular	language	for	writing	system	software		

• Features:		
– An	extremely	simple	core	language,	with	non-essential			

functionality	provided	by	a	standardized	set	of	library	routines.			
– Low-level	access	to	computer	memory	via	the	use	of	pointers.			

• C	ancestors:	C++,	C#,	Java	

9
Slide	credit:	Thomas	J.	Cortina

Python

• Created	by	Guido	van	Rossum in	the	late	1980s
• Allows	programming	in	multiple	paradigms:	object-
oriented,	structured,	functional

• Uses	dynamic	typing	and	garbage	collection

Slide	credit:	Thomas	J.	Cortina

Building	a	simple	program	in	C	
(as	compared	to	Python)

• Compilers	versus	interpreters
• Variable	declarations
• Whitespace
• The printf() function
• Functions

11

Compilers	versus	interpreters

• One	major	difference	between	C	and	Python	is	how	the	
programs	written	in	these	two	languages are	executed.

• With	C	programs,	you	usually	use	a compiler when	you	
are	ready	to	see	a	C	program	execute.

• By	contrast,	with	Python,	you	typically	use	an interpreter.

12

Compilers	versus	interpreters

• An interpreter reads	the	user-written	program	and	
performs	it	directly.	

• A compiler generates	a	file	containing	the	translation	
of	the	program	into	the	machine's	native	code.
– The	compiler	does	not	actually	execute	the	program!
– Instead,	you	first	execute	the	compiler	to	create	a	native	
executable,	and	then	you	execute	the	generated	executable.

13

The	Programming	Process	in	C

• After	creating	a	C	program,	executing	it	is	a	two	step	
process:

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

14

The	Programming	Process	in	C

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

• invokes	the	compiler,	named gcc.
• The	compiler	reads	the	source	file my_program.c
containing	the	C	codes

• It	generates	a	new	file	named a.out containing	a	
translation	of	this	code	into	the	binary	code	used	by	
the	machine.

15

Compilers	versus	interpreters

me@computer:~$ gcc my_program.c
me@computer:~$./a.out

• tells	the	computer	to	execute	this	binary	code.
• As	it	is	executing	the	program,	the	computer	has	no	idea	
that a.outwas	just	created	from	some	C	program.

16

The	Programming	Process	in	C

Create/Edit	
Program Compile Execute

“The	cycle	ends	once	the	programmer	is	satisfied	with	the	
program,	e.g.,	performance	and	correctness-wise.”

Compilers	versus	interpreters

• An interpreter reads	the	user-written	program	and	
performs	it	directly.	

• A compiler generates	a	file	containing	the	translation	
of	the	program	into	the	machine's	native	code.

• Being	compiled	has	some	radical	implications	to	
language	design.	

• C	is	designed	so	the	compiler	can	tell	everything	it	
needs	to	know	to	translate	the	C	program	without	
actually	executing	the	program.

18

Variable	declarations

• C	requires variable	declarations,	 informing	the	compiler	
about	the	variable	before	the	variable	is	actually	used.

• In	C,	the	variable	declaration	defines	the	variable's type.
• No	such	thing	in	Python!

19

Declaring	a	Variable

• Declaring	a	variable	is	simple	enough.
• You	enter	the	variable's	type,	some	whitespace,	

the	variable's	name,	and	a	semicolon:

double x;

• Value	assignment	is	similar	to	Python:

x=3;
• x will	actually	hold	the	floating-point	value	3.0	rather	than	the	

integer	3.
• However,	once	you	declare	a	variable	to	be	of	a	particular	

type,	you	cannot	change	its	type!

20

Declaring	a	Variable

• In	C,	variable	declarations	belong	at	the	top	of	the	
function	in	which	they	are	used.

• If	you	forget	to	declare	a	variable,	the	compiler	will	
refuse	to	compile	the	program:
– A variable	is	used	but	is	not	declared.	

• To	a	Python	programmer,	it	seems	a	pain	to	have	to	
include	these	variable	declarations	in	a	program,	though	
this	gets	easier	with	more	practice.

21

Whitespace

• In	Python,	whitespace	characters	like	tabs	and	newlines	
are	important:	
– You	separate	your	statements	by	placing	them	on	separate	
lines,	and	you	indicate	the	extent	of	a	block	using	
indentation.

– like	the	body	of	a while or if	statement

• C	does	not	use	whitespace	except	for	separating	words.	
• Most	statements	are	terminated	with	a	semicolon	';',	and	

blocks	of	statements	are	indicated	using	a	set	of	braces,	'{'	
and	'}'.

22

Whitespace
C	fragment
disc = b * b - 4 * a * c;
if (disc < 0)
{

num_sol = 0;
}
else
{

t0 = -b / a;
if (disc == 0)
{

num_sol = 1;
sol0 = t0 / 2;

}
else
{

num_sol = 2;
t1 = sqrt(disc) / a;
sol0 = (t0 + t1) / 2;
sol1 = (t0 - t1) / 2;

}
}

Python	equivalent
disc = b * b - 4 * a * c
if disc < 0:

num_sol = 0
else:

t0 = -b / a
if disc == 0:

num_sol = 1
sol0 = t0 / 2

else:
num_sol = 2
t1 = disc ** 0.5 / a
sol0 = (t0 + t1) / 2
sol1 = (t0 - t1) / 2

23

Whitespace
• As	said,	whitespace	is	insignificant	in	C.
• The	computer	would	be	just	as	happy	if	the	previous	code	

fragment	is	written	as	follows:

disc=b*b-4*a*c;if(disc<0){
num_sol=0;}else{t0=-b/a;if(
disc==0){num_sol=1;sol0=t0/2
;}else{num_sol=2;t1=sqrt(disc/a;
sol0=(t0+t1)/2;sol1=(t0-t1)/2;}}

• However,	do	not	write	your	programs	like	this!

24

The	printf()function

• In	Python,	displaying	results	for	the	user	is	
accomplished	by	using print.

• In	C,	instead	you	use	the printf()function	which	is	
provided	by	the	C's	standard	library.

• The	way	the	parameters	to printf()work	 is	
a	bit	complicated	but	also	quite	convenient.

25

The	printf()function

• The	first	parameter	is	a	string	specifying	the	format	of	what	to	
print,	and	the	following	parameters	indicate	the	values	to	print.

• Consider	the	following	example:
printf("# solns: %d\n", num_sol);

• “# solns: %d\n” is	the	format	string,	num_sol is	the	
value	to	be	printed.	

• The	percent	character	is	special	to printf().
– It	says	to	print	a	value	specified	in	a	subsequent	parameter.
– %d for	integers/decimals

• If	the	value	stored	in	num_sol is	2,	the	output	is:
solns: 2

26

The	printf()function

• Like	Python,	C	allows	you	to	include	escape	
characters	in	a	string	using	a	backslash:
– The	“\n”	sequence	represents	the	newline	character,	
– The	“\t”	sequence	represents	the	tab	character,	
– “\"”	sequence represents	the	double-quote	character,	
– “\\”	sequence	represents	the	backslash	character.	

• These	escape	characters	are	part	of	C	syntax,	not	
part	of	the	printf() function.

27

The	printf()function

• Let's	look	at	another	example.
printf("# of solns: %d\n", num_sol);
printf("solns: %f, %f", sol0, sol1);

• Let's	assumenum_sol holds	2, sol0 holds	4,	andsol1 holds	
1.	

• When	the	computer	reaches	these	two	printf() function	calls,	
it	executes	them	sequentially.	

• The	output	is:	
of solns: 2

solns: 4.0, 1.0

28

The	printf()function

• There's	a	variety	of	characters	that	can	follow	the	percent	
character	in	the	formatting	string.
– %d,	as	we've	already	seen,	says	to	print	an int value	in	decimal	

form.
– %f says	to	print	a double value	in	decimal-point	form.
– %e says	to	print	a double value	in	scientific	notation	(for	

example,3.000000e8).
– %c says	to	print	a char value.
– %s says	to	print	a	string.	

• There's	no	variable	type	for	representing	a	string,	but	C	does	
support	some	string	facilities	using	arrays	of	characters.

29

Functions
• Unlike	Python,	all	C	code	must	be	nested	within	functions,	

and	functions	cannot	be	nested	within	each	other.	
• A	C	program's	overall	structure	is	typically	very	

straightforward.
• It	is	a	list	of	function	definitions,	one	after	another,	each	

containing	a	list	of	statements	to	be	executed	when	the	
function	is	called.

30

Functions
• A	C	function	is	defined	by	naming	the	return	type,	followed	by	the	function	

name,	followed	by	a	set	of	parentheses	listing	the	parameters.
• Each	parameter	is	described	by	including	the	type	of	the	parameter	and	the	

parameter	name.	
• Here's a	simple	example of a	function definition:

float expon(float b, int e)
{

if (e == 0)
{

return 1.0;
}
else
{

return b * expon(b, e - 1);
}

}

31

This	is a	function named
expon,	which takes two
arguments,	 first a	floating point
number and next an	integer,	
and returns a	floating point
number.

Functions

• If	you	have	a	function	that	does	not	have	any	useful	
return	value,	then	you'd	use void as	the	return	type.

• Programs	have	one	special	function	named main,	whose	
return	type	is	an	integer.	

• This	function	is	the	“starting	point”	for	the	program:	
– The	computer	essentially	calls	the	program's main function	
when	it	wants	to	execute	the	program.	

– The	integer	return	value	is	largely	meaningless;	we'll	
always	return	0	rather	than	worrying	about	how	the	return	
value	might	be	used.

32

Functions
C	program
int gcd(int a, int b)
{
if (b == 0)
{

return a;
}
else
{

return gcd(b, a % b);
}

}

int main()
{
printf("GCD: %d\n“, gcd(24,40));
return 0;

}

Python	program
def gcd(a, b):
if b == 0:

return a
else:

return gcd(b, a % b)

print("GCD: " + str(gcd(24, 40)))

33

Statement-level	constructs

• Operators
• Basic	types
• Braces
• Statements
• Arrays
• Comments

34

Operators	in	C
Major	operators	in	C	and	Python

• They	look	similar	but	there	are	some	significant	
differences 35

C	operator	precedence Python	operator	precedence
++ -- (postfix) **
+ - ! (unary) + - (unary)
* / % * / % //
+ - (binary) + - (binary)
< > <= >= < > <= >= == !=
== != not
&& and
|| or
= += -= *= /= %=

Operators	in	C	–
Important	Distinctions

36

• C	does	not	have	an	exponentiation	operator	like	Python's	
**	operator.	For	exponentiation	in	C,	you'd	want	to	use	
the	library	function	pow().	For	example,	
pow(1.1, 2.0) computes	1.1².

• C	uses	symbols	rather	than	words	for	the	Boolean	
operations	AND	(&&),	OR	(||),	and	NOT	(!).

• The	precedence	level	of	NOT	(the	! operator)	is	very	high	
in	C.	This	is	almost	never	desired,	so	you	end	up	needing	
parentheses	most	times	you	want	to	use	the	! operator.

Operators	in	C	–
Important	Distinctions

• C	defines	assignment	as	an	operator,	whereas	Python	
defines	assignment	as	a	statement.	

• The	value	of	the	assignment	operator	is	the	value	assigned.
• A	consequence	of	C's	design	is	that	an	assignment	can	

legally	be	part	of	another	statement.
• Example:

– The	value	returned	by	getchar() is	assigned	to	the	variable	a,
– The	value	assigned	to	a is	tested	whether	it	matches	the	EOF

constant	
– It	is	used	to	decide	whether	to	repeat	the	loop	again.

37

while ((a = getchar()) != EOF)

Operators	in	C	–
Important	Distinctions

• C	defines	assignment	as	an	operator,	whereas	Python	
defines	assignment	as	a	statement.	

• The	value	of	the	assignment	operator	is	the	value	assigned.
• A	consequence	of	C's	design	is	that	an	assignment	can	

legally	be	part	of	another	statement.
• Example:

– The	value	returned	by	getchar() is	assigned	to	the	variable	a,
– The	value	assigned	to	a is	tested	whether	it	matches	the	EOF

constant	
– It	is	used	to	decide	whether	to	repeat	the	loop	again.

38

while ((a = getchar()) != EOF)

Operators	in	C	–
Important	Distinctions

• C's	operators	++ and	-- are	for	incrementing	and	
decrementing	a	variable.	Thus,	the	statement	“i++”	is	a	
shorter	form	of	the	statement	“i = i + 1”	(or	“i +=
1”).”

• C's	division	operator	/ does	integer	division	if	both	sides	of	
the	operator	have	an	int type;	that	is,	any	remainder	is	
ignored	with	such	a	division.	
– Thus,	in	C	the	expression	“13/5”	evaluates	to	2,	while	
“13/5.0”	 is	2.6:	The	first	has	integer	values	on	each	side,	
while	the	second	has	a	floating-point	number	on	the	right.

39

Basic	types	in	C

• C's	list	of	basic	types	is	quite	constrained.
int for	an	integer
char for	a	single	character
float for	a	single-precision	floating-point	number
double for	a	double-precision	floating-point	number

• Data	Type	Modifiers
– signed /	unsigned
– short /	long

40

int

• 4	bytes	(on	Unix)		
• Base-2	representation.		
• need	one	bit	for	+	or	-
• Range:	-231 to	231

• Variants:	short (2	bytes),	long (8	bytes),	unsigned
(only	non-negative)

Slide	credit:	Bert	Huang	

char

• 1	byte
• ASCII	representation	in	base-2		
• Range:	0-255	(lots	of	unused)

Slide	credit:	Bert	Huang	

float

• Stands	for	“floating	decimal	point”		
• 4	bytes		
• Similar	to	scientific	notation:	4.288	*	103

• Very	different	interpretation	of	bits	than	int and	char.		
• Range:	-1038 to	1038

Slide	credit:	Bert	Huang	

No	Boolean	type	for	representing	
true/false

• This	has	major	implications	for	a	statement	like	if,	where	
you	need	a	test	to	determine	whether	to	execute	the	
body.	C's	approach	is	to	treat	the	integer	0	as	false and	
all	other	integer	values	as	true.

• Example

44

int main() {
int i = 5;
if (i) {

printf("in if\n");
}
else {

printf("in else\n");
}
return 0;

}

prints	“in if”	when	
executed	since	the	
value	of	(i) is	5	
which	is	not	0

No	Boolean	type	in	C!

• C's	operators	that	look	like	they	should	compute	Boolean	
values	(like ==,	&&,	and	||)	actually	compute	int values	
instead.

• In	particular,	they	compute	1	to	represent	true and	0	to	
represent	false.	

• This	means	that	you	could	legitimately	type	the	following	
to	count	how	many	of	a,	b,	and	c	are	positive.

45

pos = (a > 0) + (b > 0) + (c > 0);

No	Boolean	type	in	C!

• C's	operators	that	look	like	they	should	compute	Boolean	
values	(like ==,	&&,	and	||)	actually	compute	int values	
instead.

• In	particular,	they	compute	1	to	represent	true and	0	to	
represent	false.	

• This	means	that	you	could	legitimately	type	the	following	
to	count	how	many	of	a,	b,	and	c	are	positive.

46

pos = (a > 0) + (b > 0) + (c > 0);

Basic	Data	Types
Type Size	in	Bytes Range
signed char 1 -127	to	+127
unsigned char 1 0	to	255
short int 2 -32,767	to	+32,767
unsigned short int 2 0	to	65535
int 4 -32,767	to	+32,767
unsigned int 4 0	to	65,535
long int 8 -2,147,483,647	to	+2,147,483,647
unsigned long int 8 0	to	4,294,967,295
float 4 ~10-37 to	~1038

double 8 ~10-307 to	~10308

long double 16 ~10-4931 to	~104932

Braces

• Several	statements,	like	the	if statement,	include	a	body	
that	can	hold	multiple	statements.	

• Typically	the	body	is	surrounded	by	braces	('{'	and	'}')	to	
indicate	its	extent.	But	when	the	body	holds	only	a	single	
statement,	the	braces	are	optional.

• Example:

48

if (first > second)
max = first;

else
max = second;

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

49

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else {

if (disc == 0) {
num_sol = 1;

}
else {

num_sol = 2;
}

}

Notice	that	the	
else clause	here	
holds	just	one	
statement	(an	
if…else
statement),	so	we	
can	omit	the	
braces	around	it.

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

50

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else

if (disc == 0) {
num_sol = 1;

}
else {

num_sol = 2;
}

But	this	situation	
arises	often	enough	
that	C	programmers	
follow	a	special	rule	
for	indenting	in	this	
case	— a	rule	that	
allows	all	cases	to	be	
written	at	the	same	
level	of	indentation.

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

51

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else if (disc == 0) {

num_sol = 1;
}
else {

num_sol = 2;
}

Braces

• C	programmers	use	this	quite	often	when	they	want	one	
of	several	if tests	to	be	executed.	

• Example:

52

disc = b * b - 4 * a * c;
if (disc < 0) {

num_sol = 0;
}
else if (disc == 0) {

num_sol = 1;
}
else {

num_sol = 2;
}

Statements

1. Variable declarations
– No	parallel in	Python!
– Example:

53

int x;

Statements

2. An	expression	as	a	statement
Two	forms:
– An	operator	that	changes	a	variable's	value,	like	the	
assignment	operator	(“x = 3;”),	the	addition	assignment	
operator	+=,	or	the	the	increment	operator	++.	
• Example:

– A	function	call,	like	a	statement	that	simply	calls	
the	printf() function.
• Example:

54

x = y + z;

printf("%d", x);

Statements
3. An if statement
–Works	very	similarly	to	Python's	if statement
– The	only	major	difference	is	the	syntax:
• In	C,	an	if statement's	condition	must	be	enclosed	in	
parentheses,	there	is	no	colon	following	the	condition,	and	
the	body	has	a	set	
of	braces	enclosing	it.
• As	we've	already	seen,	C	does	not	have	an	elif clause	as	in	
Python;	instead,	C	programmers	use	the	optional-brace	rule	
and	write	“else if”.

– Example:
55if (x < 0) { printf("negative"); }

Statements

4. A	return statement
– You	can	have	a	return statement	to	exit	a	function	
with	a	given	return	value.	

– Or	for	a	function	with	no	return	value	(and	a	void
return	type),	you	would	write	simply	“return;”.

– Example:

56

return 0;

Statements

5. A	while statement
– The	while statement	works	identically	to	
Python's,	although	the	syntax	is	different	in	the	
same	way	that	the	if syntax	is	different.

– Example:

57

while (i >= 0)
{

printf("%d\n", i);
i--;

}

Statements

6. A	for	statement
– While	Python	also	has	a	for statement,	its	purpose	
and	its	syntax	bear	scant	similarity	to	C's	for
statement

– Syntax:
for (init; test; update)

body;

• The	program	will	keep	executing	the	body	inside	the	for as	
long	as	the	condition	is	true	(non	zero)

• The	init is	tested	beforeeach	iteration	of	the	loop.	The	loop	
terminates	when	the	condition	is	false.	

• The	loop	is	controlled	by	a	variable	which	is	initialized		and	
modified	by	the	init and	update	(e.g.	increment	operation)	
expressions,	respectively. 58

Statements

6. A	for	statement	(cont’d.)
– Example	1:

– Example	2:

59

for (p = 1; p <= 512; p *= 2)
{

printf("%d\n", p);
}

for (i = 0; i < n; i++)
{
body

}

for loops	are	mostly	
used	for	counting	out	n
iterations

Notice	how	the	update	
portion	of	the	for
statement	has	changed	
to	“p *= 2”.

Arrays

• Python	supports	many	types	that	combine	the	basic	atomic	
types	into	a	group:	tuples,	lists,	strings,	dictionaries,	sets.

• C's	support	is	much	more	rudimentary:	The	only composite	
type	is	the	array
– Similar	to	Python's	list	except	that	an	array	in	C	cannot	grow	or	

shrink	— its	size	is	fixed	at	the	time	of	creation.
• Example:

• Another	way	to	make	an	array,	if	you	know	all	the	elements	
upfront,	is:

60

double pops[50];
pops[0] = 897934;
pops[1] = pops[0] + 11804445;

char vowels[6]	=	{'a',	'e',	'i',	'o',	'u',	'y'};

Arrays
• C	does	not	have	an	support	for	accessing	the	length	of	
an	array	once	it	is	created;	that	is,	there	is	nothing	
analogous	to	Python's	len(pops)

• What	happens	if	you	access	an	array	index	outside	the	
array,	like	accessing	pops[50]or	pops[-100]?	
– With	Python,	this	will	terminate	the	program	with	a	
friendly	message	pointing	to	the	line	at	fault	and	saying	
that	the	program	went	beyond	the	array	bounds.	

– C	is	not	nearly	so	friendly.	When	you	access	beyond	an	
array	bounds,	it	blindly	does	it.

61

Arrays
• Example:

• Some	systems	(including	some	Linux	distributions)	would	place	i
in	memory	just	after	the	vals array.	

• When	i reaches	5	and	the	computer	executes	“vals[i] = 0”,
it	in	fact	resets	the	memory	corresponding	to	i to	0.	
– The	for loop	has	reset,	and	the	program	goes	through	the	loop	again,	and	

again,	repeatedly.	
– The	program	never	reaches	the	printf function	call,	and	the	program	never	

terminates.
62

int main() {
int i;
int vals[5];

for (i = 0; i <= 5; i++) {
vals[i] = 0;

}
printf("%d\n", i);
return 0;

}

Arrays
• Example:

• Some	systems	(including	some	Linux	distributions)	would	place	i
in	memory	just	after	the	vals array.	

• When	i reaches	5	and	the	computer	executes	“vals[i] = 0”,
it	in	fact	resets	the	memory	corresponding	to	i to	0.	
– The	for loop	has	reset,	and	the	program	goes	through	the	loop	again,	and	

again,	repeatedly.	
– The	program	never	reaches	the	printf function	call,	and	the	program	never	

terminates.
63

int main() {
int i;
int vals[5];

for (i = 0; i <= 5; i++) {
vals[i] = 0;

}
printf("%d\n", i);
return 0;

}

Comments

• In	C's	original	design,	all	comments	begin	with	a	slash	
followed	by	an	asterisk	(“/*”)	and	end	with	an	asterisk	
followed	by	a	slash	(“*/”).	

• The	comment	can	span	multiple	lines.
• Example:

64

/* gcd - returns the greatest common
* divisor of its two parameters */
int gcd(int a, int b) {

...

Comments

• C++	introduced	a	single-line	comment	that	has	proven	so	
handy	that	most	of	today's	C	compilers	also	support	it.	

• It	starts	with	two	slash	characters	(“//”)	and	goes	to	the	
end	of	the	line.

• Example:

65

int gcd(int a, int b) {
if (b == 0) {
return a;

}
else {
// recurse if b != 0
return gcd(b, a % b);

}
}

Libraries

• Separating	a	program	into	various	files
– Function	prototypes
– Header	files
– Constants

66

Function	prototypes

• In	C,	a	function	must	be	declared	above	the	location	
where	you	use	it.

• The	compiler	would	complain	if	a	function	is	called	
before	defining	it.

• The	reason	is	C	assumes	that	a	compiler	reads	a	
program	from	the	top	to	bottom.

• One	way	to	get	around	this,	is	to	use	function	
prototyping,	writing	the	function	header	but	
omitting	the	body	definition.

67

Function	prototypes
• Consider	the	following	example:

int gcd(int a, int b);

int main()
{

printf("GCD: %d\n", gcd(24, 40));
return 0;

}

• By	using function prototypes,	we are	declaring that the function will
eventually be defined,	but	we are	not	defining it yet.	

• The compiler accepts this and	obediently compiles the program	
with no	complaints.

68

Line	for the function prototype

Header	files

• Larger	programs	spanning	several	files	frequently	
contain	many	functions	that	are	used	many	times	in	
many	different	files.	

• It	would	be	painful	to	repeat	every	function	prototype	
in	every	file	that	happens	to	use	the	function.	

• So	we	instead	create	a	file	called	a header	file.

69

Header	files

• A	header	file	contains	each	prototype	written	just	once	
(and	possibly	some	additional	shared	information).

• The	header	files	can	then	be	referred	to	in	each	source	
file	that	wants	the	prototypes.	

• The	file	of	prototypes	is	called	a	header	file,	since	it	
contains	the	“heads”	of	several	functions.	

• Conventionally,	header	files	use	the .h prefix,	rather	
than	the .c prefix	used	for	C	source	files.

70

Header	files
• Consider	that	the	prototype	int gcd(int a,int b) is	put	

into	a	header	file	called mathfun.h.
• We	can	incorporate	this	header	file	at	the	top	of	main.c.

#include <stdio.h>
#include "mathfun.h"

int main() {
printf("GCD: %d\n", gcd(24, 40));
return 0;

}

• The	#include directive	tells	the	preprocessor	to	replace	
this line	with	the	contents	of	the	file	specified.
– The	angle	brackets	are	for	standard	header	files	such	as	stdio.h.	
– The	quotation	marks	are	for	custom-written	header	files	that	can	be	

found	in	the	same	directory	as	the	source	files. 71

Constants

• #define directive	tells	the	preprocessor	to	substitute	
all	future	occurrences	of	some	word	with	something	else.

• Example:

– The	preprocessors	automatically	translate	the	above	
expression	into:

72

#define PI 3.14159
printf("area: %f\n", PI * r * r);

printf("area: %f\n", 3.14159 * r * r);

