
Programming in HMMM

Hacettepe University

Computer Engineering Department

BBM103 Introduction to Programming Lab 1

Week 3

Fall 2017

Von Neumann Architecture

• A program (a list of
instructions) is stored in the
main memory.

• Stored Program Concept

• Instructions are copied (one
at a time) into the
instruction register in the
CPU for execution.

Von Neumann Architecture

Programs are stored in memory in
machine language.

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

central processing unit registers random access memory locations

CPU RAMVon Neumann
bottleneck

programprocessing

r1

r2 General-purpose register, r2

General-purpose register, r1

The Power of the Stored Program

• A program written in machine language is a series of binary
numbers representing the instructions stored in memory.

• The stored program concept is a key reason why computers
are so powerful:

• Running a different program does not require large amounts of
time and effort to reconfigure or rewire hardware; it only
requires writing the new program to memory.

Assembly Language

• Assembly language is a
human-readable machine
language.

• Instead of programming in
binary (0’s and 1’s), it is easier
to use an assembly language.

• An assembler is a computer
program that interprets
software programs written in
assembly language into
machine language.

0

1

2

3

4

5

6

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

"mnemonics" instead
of bits

read r1

halt

mul r2 r1 r1

add r2 r2 r1

write r2

The Harvey Mudd Miniature Machine (HMMM)

• Hmmm (Harvey Mudd Miniature Machine) is a 16-bit, 23-instruction
simulated assembly language with 28=256 16-bit words of memory.

• In addition to the program counter and instruction register, there are
16 registers named r0 through r15.

Hmmm assembly code Corresponding instructions in machine language

The Harvey Mudd Miniature Machine (HMMM)

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

central processing unit registers random access memory locations

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

CPU RAM
Von Neumann
bottleneck

The Harvey Mudd Miniature Machine (HMMM)

div r1 r1 r2

add r3 r1 r2 reg3 = reg1 + reg2

sub r3 r1 r2 reg3 = reg1 – reg2

reg2 = reg1 * reg1

reg1 = reg1 / reg2 integers only!

mul r2 r1 r1

read r1

write r2

reads from keyboard into reg1

setn r1 42
you can replace 42 with

anything from -128 to 127

addn r1 -1 a shortcut

reg1 = 42

reg1 = reg1 - 1

outputs reg2 onto the screen

The Harvey Mudd Miniature Machine (HMMM)

Hmmm
the complete reference

At

www.cs.hmc.edu/~cs5grad/cs5/hmmm/
documentation/documentation.html

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

CPU RAM
Von Neumann

bottleneck

Screen

6

6 (input)

Example #1:

central processing unit registers random access memory locations

What does this program do?

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

0

1

2

3

4

Screen

6
6 (input)

Example #1 (cont.):

Get input from user to r1

r2 = r1 * r1

r2 = r2 + r1

Print the contents of register
r2 on standard output

Halt program

Jumps in HMMM

jeqzn r1 42

jgtzn r1 42

jltzn r1 42

jnezn r1 42

IF r1 == 0 THEN jump to line number 42

IF r1 > 0 THEN jump to line number 42

IF r1 < 0 THEN jump to line number 42

IF r1 != 0 THEN jump to line number 42

Indirect jump

jumpr r1 Jump to the line# stored in r1

Unconditional jump

jumpn 42 Jump to program line # 42

Screen

Example #2:

RAM

read r10

1

2

3

4

5

6

7

8

jgtzn r1 7

setn r2 -1

mul r1 r1 r2

nop

nop

nop

write r1

halt

-6 (input)

What function does
this program
implement?

Exercise

1. Write a Hmmm program to compute the following for x
given as user input and output the result to the screen:

a) If x<0 3x – 4

b) else if x>0 X / 5

c) else X2+10 / 5

