Hacettepe University
Computer Engineering Department

Programming in HMMM

BBM103 Introduction to Programming Lab 1
Week 3

Fall 2017

Von Neumann Architecture

* A program (a list of
instructions) is stored in the Logic Unit
main memory. Registers

e Stored Program Concept

* Instructions are copied (one
at a time) into the
instruction register in the
CPU for execution.

Von Neumann Architecture

Von Neumann
bottleneck

program

— RAM

processing
CPU —
central processing unit registers
rl General-purpose register, rl
r2 General-purpose register, r2

Programs are stored in memory in

machine language.

B W N B O

o O

random access memory locations

0000 0001 0000 0001

1000 0010 0001 0001

0110 0010 0010 0001

0000 0010 0000 0010

0000 0000 0000 0000

— pits)

The Power of the Stored Program

* A program written in machine language is a series of binary
numbers representing the instructions stored in memory.

* The stored program concept is a key reason why computers
are so powerful:

* Running a different program does not require large amounts of
time and effort to reconfigure or rewire hardware; it only
requires writing the new program to memory.

Assembly Language

* Assembly language is a
human-readable machine
language.

* Instead of programming in
binary (0’s and 1’s), it is easier
to use an assembly language.

* An assembler is a computer
program that interprets
software programs written in
assembly language into
machine language.

00000
-\

001 0000 0001

1o§ \70 0001 0001
01 ’

dgead rl

0000 O

mul r2 rl rl

0000 O

add r2 r2 rl

write r2

halt

"mnemonics" instead
of bits

The Harvey Mudd Miniature Machine (HMMM)

* Hmmm (Harvey Mudd Miniature Machine) is a 16-bit, 23-instruction
simulated assembly language with 28=256 16-bit words of memory.

* In addition to the program counter and instruction register, there are
16 registers named rO through r15.

Hmmm assembly code Corresponding instructions in machine language
0 read ri 0000 0001 0000 0001
1 read r2 0000 0010 0000 0001
2 mul ri ri r2 1000 0001 0001 0010
3 setn r2 2 ‘ 0001 0010 0000 0010
4 div ri ri r2 1001 0001 0001 0010
5 write ri 0000 0001 0000 0010
6 halt 0000 0000 0000 0000

The Harvey Mudd Miniature Machine (HMMM)

CPU RAM
o |l read rl
rl
General-purpose register rl 1 mu l r2 rl 1,.1
r2 O(V]
S 2 | > eM
Ge \Ste‘. A 256
6 (€S m \ONS
l 3 | n \Oca’&\ ‘
« ' halt

The Harvey Mudd Miniature Machine (HMMM)

read rl
write r2

setn rl 42
addg rl -1

add
sub

mul
div

r3 rl r2
r3 rl r2

r2 rl rl
rl rl r2

reads from keyboard into regl

outputs reg2 onto the screen

sl = anythin from 128 to 127
regl = regl - 1 a shortcut
reg3 = regl + reg2

reg3 = regl - reg2

reg2 = regl * reqgl

regl = regl / reg2 integers only!

The Harvey Mudd Miniature Machine (HMMM

Hmmm

the complete reference

|Instruction l]]escription

‘ System instructions

[ha1t [Stop!

[read rx [Flace user input in register r¥

[write rx [Frint contents of register rX

[nop [be nothing

‘ Setting register data

[setn rx W [Set register rX equal to the integer W {-128 to +127)
[addn rx W [edd integer N (-128 to 127) to register rX

|cop;f rX rY |Set r¥ = Y

Arithmetic

[add X Y rZ

|Set r¥i =¥ + i

|su.b r¥{ Y ri

|Set r¥i =¥ - i

[neg ri rY

[fet rX = -r¥

At
www.cs.hmc.edu/~cs5grad/cs5/hmmm/

documentation/documentation.html

[mal r¥ rY rz

[Set rX = rY * rzZ

[div r¥ r¥ rZ

|SE1: r¥ = rY¥ / rZI (integer diwvision; no remainder)

[mod i rY rZ

|SE1: r¥ = r¥ % rZI (returns the remainder of integer divisicon)

‘ Jumps!

|jumpn N |Set program ccunter to address N

[umpr =X [Set program counter to address in rX

[jegezn rx W [ff X == 0, then jump to line N

[jnezn rx W [ff = !'= 0, then jump to line N

[jgtzn rx W [I£ r¥X > 0, then jump to line N

[jltzn rx W [I£ £ < 0, then jump to line N

|calln rE N |C‘c:p3,-' the next address into r¥ and then jump to mem. addr.
‘ Interacting with memory (RAM)
|load.n r¥i N |Lc:a::1 register r¥ with the contents of memcry address H
|stomn r¥i N |Stc:e contents of register r¥ intc memory address W
|loadr rX rY |Lc:ad register rX with data from the address lccaticn held in req. :'f|loadi, load

|stomr r¥ Y

|Stc:e contents of register rX intc memory address held in

|st0reil store

Example #1.

Screen

CPU

—

Von Neumann
bottleneck

— RAM

6 (inpUt) central processing unit registers

rl

General-purpose register rl

r2

General-purpose register r2

What does this program do?

random access memory locations

6

v
read rl

mul r2 rl rl

add r2 r2 rl

write r2

halt

Example #1 (cont.):

Screen

6 (input)

v
read rl

mul r2 rl rl

add r2 r2 rl

write r2

halt

Get input from user to rl
Hr2 = rl * rl

Hr2 = r2 + rl

Print the contents of register
r2 on standard output

Halt program

Jumps in HMMM

jeqzn rl 42 IFrl1 ==0 THEN jump to line number 42
jgtzn rl 42 IFrl1 >0 THEN jump to line number 42

jltzn rl 42 IFrl<0 THEN jump to line number 42

jnezn rl 42 IFrl!=0 THEN jump to line number 42

Unconditional jump

jumpn 42 Jump to program line # 42

Indirect jump

jumpr rl Jump to the line# stored inrl

Example #2:

Screen RAM
-6 (input)

read rl

jgtzn rl 7
setn r2 -1 What function does

mul rl rl r2 this program
implement?

nop

space 1o

nop future

expansio™ —

nop

write rl
halt

0 J9 oo 00 & W NN B O

Exercise

1. Write a Hmmm program to compute the following for x
given as user input and output the result to the screen:

a) If x<0 3x - 4
b) else if x>0 X / 5
c) else X?+10 / 5

