
Programming in

Hacettepe University

Computer Engineering Department

BBM103 Introduction to Programming Lab 1

Week 7

Fall 2017

Collections

•A Collection Groups Similar Things

List: ordered

Set: unordered, no duplicates

Tuple: unmodifiable list

Dictionary: maps from keys to values

Lists

The list is a most versatile datatype available in Python which can be
written as a list of comma-separated values (items) between square
brackets. Important thing about a list is that items in a list need not be of
the same type.

Creating a list:

Splitting a string
to create a list:

my_list = [1, 2, 3, 4, 5]

s = 'spam-spam-spam'

delimiter = '-'

s.split(delimiter)
split()

Output:['spam', 'spam', 'spam']

Lists

Making a list of
chars in a string:

Joining elements
of a list into a
string:

t = ['programming', 'is', 'fun']

delimiter = ' '

delimiter.join(t) join()

Output:'programming is fun'

s = 'spam'

t = list(s)

print(t)

Output:

['s', 'p', 'a', 'm']

Accessing Values in Lists by Index:

list1 = [1, 2, 3, 4, 5]

print ("list1[0]: ", list1[0])

print ("list1[1:5]: ", list2[1:5])

Output:

list1[0]: 1

list1[1:5]: [2, 3, 4, 5]

Updating Lists:

list = [1, 2, 3, 4, 5]

print ("Value available at index 2: ",list[2])

list[2] = 6

print ("New value available at index 2: ", list[2])

Output:

Value available at index 2: 3

New value available at index 2: 6

Deleting List Elements

list = [1, 2, 3, 4, 5]

print(list)

del list[2]

print ("After deleting value at index 2: ",list)

Output:

[1, 2, 3, 4, 5]

After deleting value at index 2: [1, 2, 4, 5]

Basic List Operations

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

List Functions & Methods:

Example:

len (list) : Gives the total length of the list.

list = [1, 2, 3, 4, 5]

print ('length of the list is',len(list))

Output:

length of the list is 5

Example:

max(list): Returns the item from the list with the maximum value.

list=[456, 700, 200]

print ("Max value element:", max(list))

Output:

Max value element: 700

Example:

min(list): Returns the item from the list with the minimum value.

list=[456, 700, 200]

print ("Min value element:", min(list))

Output:

Min value element: 200

Example:

list.append(obj): Appends object obj to list

list = [123, 'xyz', 'zara', 'abc']

list.append(2009)

print ("Updated List: ", list)

Output:

Updated List: [123, 'xyz', 'zara', 'abc', 2009]

Example:

list.count(obj): Returns the count of how many times obj occurs in a list

aList = [123, 'xyz', 'zara', 'abc', 123]

print ("Count for 123: ", aList.count(123))

print ("Count for zara: ", aList.count('zara'))

Output:

Count for 123: 2

Count for zara: 1

Example:

list.extend(seq) : Appends the contents of seq to list

aList = [123, 'xyz', 'zara']

bList = [2009, 'manni']

aList.extend(bList)

print ("Extended List: ", aList)

Output:

Extended List: [123, 'xyz', 'zara', 2009, 'manni']

Example:

list.index(obj): Returns the lowest index of obj in the list

list=[456, 700, 200]

print ("Index of 700: ", list.index(700))

Output:

Index of 700: 1

Example:

list.insert(index, obj): Inserts object obj into the list at offset index

aList = [123, 'xyz', 'zara', 'abc']

aList.insert(3, 2009)

print ("Final List: ", aList)

Output:

Final List: [123, 'xyz', 'zara', 2009, 'abc']

Example:

list.pop(obj=list[-1]): Removes and returns the last obj from list

aList = [123, 'xyz', 'zara', 'abc']

print ("A List: ", aList.pop())

print ("B List: ", aList.pop(2))

Output:

A List: abc

B List: zara

Example:

list.remove(obj): Removes object obj from list

aList = [123, 'xyz', 'zara', 'abc', 'xyz']

aList.remove('xyz')

print ("List: ", aList)

aList.remove('abc');

print ("List: ", aList)

Output:

List : [123, 'zara', 'abc', 'xyz']

List : [123, 'zara', 'xyz']

Example:

list.reverse(): Reverses the objects of a list

aList = [123, 'xyz', 'zara', 'abc', 'xyz']

aList.reverse()

print ("List: ", aList)

Output:

List: ['xyz', 'abc', 'zara', 'xyz', 123]

Example:

list.sort([func]): Sorts objects of list, uses compare func if given

aList = ['xyz', 'zara', 'abc', 'xyz']

aList.sort()

print ("List: ", aList)

Output:

List: ['abc', 'xyz', 'xyz', 'zara']

List Comprehensions

liste = [i for i in range(1000)]

Method 1:

liste = [i for i in range(1000) if i % 2 == 0]

Method 2:

liste = []

for i in range(1000):

if i % 2 == 0:

liste += [i]

Sets

Operation Equivalent Result

s.update(t) s |= t return set s with elements added from t

s.intersection_update(t) s &= t return set s keeping only elements also found in t

s.difference_update(t) s -= t return set s after removing elements found in t

s.symmetric_difference_update(t) s ^= t return set s with elements from s or t but not both

s.add(x) add element x to set s

s.remove(x) remove x from set s; raises KeyError if not present

s.discard(x) removes x from set s if present

s.pop() remove and return an arbitrary element from s; raises

KeyError if empty

s.clear() remove all elements from set s

Sets are lists with no duplicate entries.

https://docs.python.org/2/library/exceptions.html#exceptions.KeyError
https://docs.python.org/2/library/exceptions.html#exceptions.KeyError

Example:

list = ["elma", "armut", "elma", "kebap", "şeker",

..."armut","çilek", "ağaç", "şeker", "kebap", "şeker"]

for i in set(list):

print(i)

Output:
çilek
elma
kebap
armut
ağaç
şeker

Example:

list = ["elma", "armut", "elma", "kiraz",

... "çilek", "kiraz", "elma", "kebap"]

for i in set(list):

print("{} count: {}".format(i, list.count(i)))

Output:
armut count: 1
çilek count: 1
elma count: 3
kiraz count: 2
kebap count: 1

Tuples

• A tuple is a sequence of immutable Python objects. Tuples are
sequences, just like lists.

• What are the differences between tuples and lists ?

Tuples

• A tuple is a sequence of immutable Python objects. Tuples are
sequences, just like lists.

• The differences between tuples and lists are,
• the tuples cannot be changed unlike lists,

• tuples use parentheses, whereas lists use square brackets.

Creating a tuple: tup = (1, 2, 3, 4, 5)

Accessing Values in Tuples:

tup1 = ('physics', 'chemistry', 1997, 2000)

tup2 = (1, 2, 3, 4, 5, 6, 7)

print ("tup1[0]: ", tup1[0])

print ("tup2[1:5]: ", tup2[1:5])

Output:

tup1[0]: physics

tup2[1:5]: (2, 3, 4, 5)

Updating Tuples

tup1 = (12, 34.56)

tup2 = ('abc', 'xyz')

tup3 = tup1 + tup2

print (tup3)

Output:

(12, 34.56, 'abc', 'xyz')

Dictionaries

• Dictionary as an unordered set of key: value pairs, with the requirement
that the keys are unique (within one dictionary).

• Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed by keys, which can be any immutable type.

Creating a dictionary:

dict = {'Name':'Zara','Age':7,'Class':'First'}

Accessing Values in a Dictionary:

dict ={'Name':'Zara','Age':7,'Class':'First'}

print ("dict['Name']: ",dict['Name'])

print ("dict['Age']: ",dict['Age'])

Output:

dict['Name']: Zara

dict['Age']: 7

Updating a Dictionary

dict ={'Name':'Zara','Age':7,'Class':'First'}

dict['Age']=8

dict['School']="DPS School"

print ("dict['Age']: ",dict['Age'])

print ("dict['School']: ",dict['School'])

Output:

dict['Age']: 8

dict['School']: DPS School

SN Methods with Description

1 dict.clear() : Removes all elements of dictionary dict

2 dict.copy() : Returns a shallow copy of dictionary dict

3 dict.fromkeys() : Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None) : For key key, returns value or default if key not in dictionary

5 dict.has_key(key) : Returns true if key in dictionary dict, false otherwise

6 dict.items() : Returns a list of dict's (key, value) tuple pairs

7 dict.keys() : Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None) : Similar to get(), but will set dict[key]=default if key is not already in dict

9 dict.update(dict2) : Adds dictionary dict2's key-values pairs to dict

10 dict.values() : Returns list of dictionary dict's values

Example:

phone_book = {"ahmet öz" : "0532 532 32 32",

"mehmet su": "0543 543 42 42",

"seda naz" : "0533 533 33 33",

"eda ala" : "0212 212 12 12"}

person = input("Please enter a name of a person: ")

if person in phone_book:

answer = "{} adlı kişinin telefon numarası: {}"

print(answer.format(person, phone_book [person]))

else:

print(“This name is not in this telephone book!")

Example:

names = ["ahmet", "mehmet", "fırat", "zeynep",

"selma", "abdullah", "cem"]

dict = {i: len(i) for i in names}

Create a dictionary from a list

File I/O

The open Function:

Example:

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

print ("Closed or not : ", fo.closed)

print ("Opening mode : ", fo.mode)

Output:
Name of the file: foo.txt
Closed or not : False
Opening mode : wb

File I/O

Opening files to read:

Output:
Grades from the first line: ['98', '86', '100', '54', '63\n']

my_file = open("grades.txt", "r")

first_line = my_file.readline()

grades = first_line.split('-')

print ("Grades from the first line: ", grades)

my_file.close()

grades.txt

98-86-100-54-63
54-89-78-90-85
0-95-70-69-87-55

File I/O
Sr.No. Modes & Description

1
r
Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode.

2
rb
Opens a file for reading only in binary format. The file pointer is placed at the beginning
of the file. This is the default mode.

3
r+
Opens a file for both reading and writing. The file pointer placed at the beginning of the
file.

4
rb+
Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file.

5
w
Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing.

6
wb
Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

7
w+
Opens a file for both writing and reading. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and writing.

8

wb+
Opens a file for both writing and reading in binary format. Overwrites the
existing file if the file exists. If the file does not exist, creates a new file for
reading and writing.

9

a
Opens a file for appending. The file pointer is at the end of the file if the file
exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing.

10

ab
Opens a file for appending in binary format. The file pointer is at the end of the
file if the file exists. That is, the file is in the append mode. If the file does not
exist, it creates a new file for writing.

11

a+
Opens a file for both appending and reading. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If the file does not exist,
it creates a new file for reading and writing.

12

ab+
Opens a file for both appending and reading in binary format. The file pointer is
at the end of the file if the file exists. The file opens in the append mode. If the
file does not exist, it creates a new file for reading and writing.

Opening modes

Opening files and reading all lines:

Output:
Total expense was: 751

my_file = open("expenses.txt", "r")

total_expense = 0

for line in my_file.readlines():

expenses_list = line.split('-')

for expense in expenses_list:

total_expense += int(expense)

print(“Total expense was:”, total_expense)

my_file.close()

expenses.txt

100-54-63
78-90-85
70-69-87-55

Example:

file = open("input.txt","r")

for aline in file.readlines():

list = aline.split(':')

print("name:",list[0],"phone number:",list[1])

file.close()

input.txt
Ahmet Özbudak : 0533 123 23 34
Mehmet Sülün : 0532 212 22 22
Sami Sam : 0542 333 34 34

Output:

name: Ahmet Özbudak phone number: 0533 123 23 34

name: Mehmet Sülün phone number: 0532 212 22 22

name: Sami Sam phone number: 0542 333 34 34

Opening files to write (print output):

Output: The sentence “I am writing this output to a file” will be
written into a file named output.txt

my_file = open("output.txt", "w")

my_file.write("I am writing this output to a file")

my_file.close()

New function:
f.write(string)

writes the contents of string to the file, returning the
number of characters written.

Opening files to write (print output) cont.:

Output: The sentence “I am 20 years old.” will be written into a file
named myage.txt

my_file = open("myage.txt", "w")

my_age = 20

my_file.write("I am " + str(my_age) + " years old.")

my_file.close()

file.write(string) takes only one argument, so you need to change any other
types into strings and concatenate (+) all parts before passing them as an argument.

• Write a program that reads an input file
grades.txt which stores student names
and their grades separated by a colon (:),
prints out the name of the student with the
highest grade, the name of the student with
the lowest grade, and the average grade for
this class. Your program should also write
the same output to an output file named
class_stats.txt

• Note: use a dictionary to store the
information from grades.txt

Exercise

grades.txt

Ahmet Özbudak:87

Mehmet Sülün:99

Sami Sam:45

Leyla Tan:93

Emre Göz:32

