
Programming in

Hacettepe University
Computer Engineering Department

BBM103 Introduction to Programming Lab 1
Week 8

Fall 2017

WHAT IS RECURSION?

• Goal: simplify the problem by solving the same
problem for smaller input

• Solve problems by divide(decrease)-and-conquer

• Function calls itself (but not infinitely!)

• One or more base cases

ITERATION vs. RECURSION

• An ITERATIVE function is one that loops to repeat
some part of the code.

• A RECURSIVE function is one that calls itself again to
repeat the code.

Multiplication Example: ITERATIVE Solution

a*b is equal to “add a to itself b times”

def multiply_iterative(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

Iteration

a*b = a + a + a + a + … + a
b times

Multiplication Example: RECURSIVE Solution

a*b = a + a + a + a + … + a = a + a*(b-1)

def mult_recursive(a, b):
if b == 1:

return a
else:

return a + mult_recursive(a, b-1)

b times

b-1 times

Base case

Recursive
Step

Factorial Example: ITERATIVE Solution

n! = n*(n-1)*(n-2)*(n-3)* … * 1

def factorial_iterative(n):
result = 1
while n > 0:

result *= n
n -= 1

return result

Iteration

Factorial Example: RECURSIVE Solution

n! = n*(n-1)*(n-2)*(n-3)* … * 1

• Base Case: if n = 1 1! = 1
• Recursive step: n! = n * (n-1)!

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n-1)

Base case

Recursive
Step

ITERATION vs. RECURSION

• recursion may be simpler, more intuitive, and also
efficient and natural for a programmer.

• BUT! Recursion may not be efficient from the
computer’s point of view.

• Ex. Computing nth Fibonacci number recursively takes O(2n)
steps!

Output:
Please enter a number to print fibonacci numbers!4
3

Example: Fibonacci Numbers
The Fibonacci numbers are the numbers of the following sequence of integer values:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
The Fibonacci numbers are defined by:
Fn = Fn-1 + Fn-2
with F0 = 0 and F1 = 1

Output:

Example: Visualizing Recursion

Example: Computing Exponent

We can compute exponent in fewer steps if we use successive squaring. Lets look at the execution pattern now.

Output:
[[1, 2, [3, 4]], [5, 6], 7]
[1, 2, 3, 4, 5, 6, 7]

Example: Flatten a List

	Programming in
	Slayt Numarası 2
	WHAT IS RECURSION?
	ITERATION vs. RECURSION
	Multiplication Example: ITERATIVE Solution
	Multiplication Example: RECURSIVE Solution
	Factorial Example: ITERATIVE Solution
	Factorial Example: RECURSIVE Solution
	ITERATION vs. RECURSION
	Slayt Numarası 10
	Slayt Numarası 11
	Slayt Numarası 12
	Slayt Numarası 13

