BBM 101

John von Neumann in front of the IAS machine (1952)

Introduction to Pros
 Prog

$\because \quad$
4ncerict
 -Lecture \#02-Computers
h hacettepe
UNIVERSITY Erkut Erdem, Aykut Erdem \& Aydın Kaya // Fall 2017

Last time... What is computation

Computer science is about logic, problem solving, and creativity

Fixed Program Computers

- Abacus
- Antikythera Mechanism
- Pascaline
- Leibniz Wheel
- Jacquard's Loom
- Babbage Difference Engine
- The Hollerith Electric Tabulating System
- Atanasoff-Berry Computer (ABC)
- Turing Bombe

- Declarative knowledge
- Axioms (definitions)
- Statements of fact
- Imperative knowledge
- How to do something
- A sequence of specific instructions (what computation is about)

Stored Program Computers

- Problem solving

- What if input is a machine (description) itself?
- Universal Turing machines
- An abstract general purpose computer

Lecture Overview

- Building a Computer
- The Harvey Mudd Miniature Machine (HMMM)

Disclaimer: Much of the material and slides for this lecture were borrowed from

- Gregory Kesden's CMU 15-110 class
—David Stotts' UNC-CH COMP 110H class
—Swami Iyer's Umass Boston CS110 class

Lecture Overview

- Building a Computer
- The Harvey Mudd Miniature Machine (HMMM)

New reference book!

CS for All, by C. Alvarado, Z. Dodds, G. Kuenning \&
R. Libeskind-Hadas

- Programming languages (PLs)

Disclaimer: Much of the material and slides for this lecture were borrowed from

- Gregory Kesden's CMU 15-110 class
-David Stotts' UNC-CH COMP 110H class
—Swami Iyer's Umass Boston CS110 class

Lecture Overview

- Building a Computer
- The Harvey Mudd Miniature Machine (HMMM)

Building a Computer

- Numbers
- Letters and Strings
- Structured Information
- Boolean Algebra and Functions
- Logic Using Electrical Circuits
- Computing With Logic
- Memory
- von Neumann Architecture

Numbers

- At the most fundamental level, a computer manipulates electricity according to specific rules
- To make those rules produce something useful, we need to associate the electrical signals with the numbers and symbols that we, as humans, like to use
- To represent integers, computers use combinations of numbers that are powers of 2, called the base 2 or binary representation
- bit $=0$ or 1
- False or True
- Off or On
- Low voltage or High voltage

Numbers

- With four consecutive powers $2^{0}, 2^{1}, 2^{2}, 2^{3}$, we can make all of the integers from 0 to 15 using 0 or 1 of each of the four powers
- For example, $13_{10}=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=1101_{2}$; in other words, 1101 in base 2 means $1101_{2}=1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=$ 13_{10}
- Analogously, 603 in base 10 means $603_{10}=6 \cdot 10^{2}+0 \cdot 10^{1}+3 \cdot 10^{0}$ and 207 in base 8 means $2078=2 \cdot 8^{2}+0 \cdot 8^{1}+7 \cdot 8^{0}=135_{10}$
- In general, if we choose some base $b \geq 2$, every positive integer between 0 and $b^{d}-1$ can be uniquely represented using d digits, with coefficients having values 0 through $b-1$
- A modern 64-bit computer can represent integers up to $2^{64}-1$

Numbers

- Arithmetic in any base is analogous to arithmetic in base 10
- Examples of addition in base 10 and base 2

1
177
$+\quad 2 \quad 5$
42

- To represent a negative integer, a computer typically uses a system called two's complement, which involves flipping the bits of the positive number and then adding 1
- For example, on an 8-bit computer, $3=00000011$, so
$-3=11111101$

Numbers

- If we are using base 10 and only have eight digits to represent our numbers, we might use the first six digits for the fractional part of a number and last two for the exponent
- For example, 31415901 would represent $0.314159 \times 10^{1}=$ 3.14159
- Computers use a similar idea to represent fractional numbers

IEEE 754 Floating Point Standard		
s $\mathrm{e}=$ exponent $\mathrm{m}=$ mantissa 1 bit 8 bits 23 bits number $=(-1)^{\mathrm{s}}$ $(1 . \mathrm{m}) * 2^{\mathrm{e}-127}$		

Letters and Strings

- In order to represent letters numerically, we need a convention on the encoding
- The American National Standards Institute (ANSI) has established such a convention, called ASCII (American Standard Code for Information Interchange)
- ASCII defines encodings for the upperand lower-case letters, numbers, and a select set of special characters
- ASCII, being an 8-bit code, can only represent 256 different symbols, and doesn't provide for characters used in many languages

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	!	"	\#	\$	\%	\&	'	()	*	+	,	-	.	1
3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	=	>	?
4	a	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\backslash]	\wedge	-
6	,	a	b	C	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	S	t	u	v	w	x	y	z	\{	1	\}	~	DEL

Hexadecimal to ASCII conversion table

Letters and Strings

- The International Standards Organization's (ISO) 16-bit Unicode system can represent every character in every known language, with room for more
- Unicode being somewhat wasteful of space for English documents, ISO also defined several "Unicode Transformation Formats" (UTF), the most popular being UTF-8

Unicode characters

Letters and Strings

- Emojis are just like characters, and they have a standard, too

- Full Emoji List, v5.0 https://unicode.org/emoji/charts/full-emoji-list.html

Letters and Strings

- A string is represented as a sequence of numbers, with a "length field" at the very beginning that specifies the length of the string
- For example, in ASCII the sequence 99, 104, 111, 99, 111, 108, $97,116,101$ translates to the string "chocolate", with the length field set to 9

Structured Information

- We can represent any information as a sequence of numbers
- Examples
- A picture can be represented as a sequence of pixels, each represented as three numbers giving the amount of red, green, and blue at that pixel
- A sound can be represented as a temporal sequence of "sound pressure levels" in the air
- A movie can be represented as a temporal sequence of individual pictures, usually 24 or 30 per second, along with a matching sound sequence

Boolean Algebra and Functions

- Boolean variables are variables that take the value True (1) or False (0)
- With Booleans 1 and 0 we could use the operations (functions) AND, OR, and NOT to build up more interesting Boolean functions
- A truth table for a Boolean function is a listing of all possible combinations of values of the input variables, together with the result produced by the function
- Truth tables for AND, OR, and NOT functions

x	y	x and y
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x OR y
0	0	0
0	1	1
1	0	1
1	1	1

x	NOT x
0	1
1	0

Boolean Algebra and Functions

- Any function of Boolean variables, no matter how complex, can be expressed in terms of AND, OR, and NOT
- Consider the proposition "if you score over 93% in this course, then you will get an $A^{\prime \prime}$
- The truth values for the above proposition is given by the "implication" function $(x \Longrightarrow y)$ having the following truth table

x	y	$x \Longrightarrow y$
0	0	1
0	1	1
1	0	0
1	1	1

- The function can be compactly written as not x or x and y (or $\bar{x}+x y$)

Boolean Algebra and Functions

- The minterm expansion algorithm, due to Claude Shannon, provides a systematic approach for building Boolean functions from truth tables
- Minterm expansion algorithm

1. Write down the truth table for the Boolean function under consideration
2. Delete all rows from the truth table where the value of the function is 0
3. For each remaining row, create something called a "minterm" as follows

- For each variable that has a 1 in that row, write the name of the variable. If the input variable is 0 in that row, write the variable with a negation symbol to not it
- Now AND all of these variables together

4. Combine all of the minterms for the rows using or

Boolean Algebra and Functions

- For the implication function, the minterm expansion algorithm applied as follows

x	y	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x} \bar{y}$
0	1	1	$\bar{x} y$
1	1	1	$x y$

produces the Boolean function $\bar{x} \bar{y}+\bar{x} y+x y$, which is equivalent to the simpler function $\bar{x}+x y$

- Finding the simplest form of a Boolean function is provably as hard as some of the hardest (unsolved) problems in mathematics and computer science

Logic using Electrical Circuits

- An electromechanical switch in which when the input is off, the output is "low" (0), and when the input is on, the output is "high" (1)

- The NOT gate constructed using a switch that conducts only when the input is off

- The AND and OR gates for computing x and y and x or y, constructed using electromechanical switches

Logic using Electrical Circuits

- Computers today are built with much smaller, much faster, more reliable, and more efficient transistorized switches
- Since the details of the switches aren't terribly important at this level of abstraction, we represent, or "abstract", the gates using the following symbols

NOT

- A logical circuit for the implication function $\bar{x} \bar{y}+\bar{x} y+x y$

Computing with Logic

- A truth table describing the addition of two two-bit numbers to get a three-bit result

x	y	$x+y$
00	00	000
00	01	001
00	10	010
\vdots	\vdots	\vdots
01	10	011
01	11	100
\vdots	\vdots	\vdots
11	11	110

- Building a corresponding circuit using the minterm expansion algorithm is infeasible - adding two 16-bit numbers, for example, will result in a circuit with several billion gates

Computing with Logic

- We build a relatively simple circuit called a full adder (FA) that does just one column of addition

x	y	$c_{\text {in }}$	z	$c_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- The minterm expansion principle applied to the truth table for the FA circut yields the following Boolean functions

$$
\begin{gathered}
z=\bar{x} \bar{y} c_{i n}+\bar{x} y \bar{c}_{i n}+x \bar{y} \bar{c}_{i n}+x y c_{i n} \\
c_{o u t}=\bar{x} y c_{i n}+x \bar{y} c_{i n}+x y \bar{c}_{i n}+x y c_{i n}
\end{gathered}
$$

Computing with Logic

- We can "chain" n full adders together to add two n-bit numbers, and the resulting circuit is called a ripple-carry adder
- A 2-bit ripple-carry adder

Memory

- Truth table for a NOR gate (OR followed by NOT)

x	y	x NOR y
0	0	1
0	1	0
1	0	0
1	1	0

- A latch is a device that allows us to "lock" a bit and retrieve it later
- By aggregating millions of latches we have the Random Access Memory (RAM)
- A latch can be constructed from two NOR gates as shown below

where the input S is known as "set" while the input R is known as "reset"

Recall: Stored Program Concept

- Stored-program concept is the fundamental principle of the ENIAC's successor, the EDVAC (Electronic Discrete Variable Automatic Computer)
- Instructions were stored in memory sequentially with their data
- Instructions were executed sequentially except where a conditional instruction would cause a jump to an instruction someplace other than the next instruction

Stored Program Concept

- Mauchly and Eckert are generally credited with the idea of the stored-program
- BUT: John von Neumann publishes a draft report that describes the concept and earns the recognition as the inventor of the concept
- "von Neumann architecture"
- A First Draft of a Report of the EDVAC published in 1945
- http://www.worldpowersystems.com/J/EDVAC/

Stored Program Concept

- "Fetch-Decode-Execute" cycle

Stored Program Concept

- "Fetch-Decode-Execute" cycle

Stored Program Concept

- "Fetch-Decode-Execute" cycle

von Neumann Architecture

- Let's assume an 8-bit computer with only four instructions:
- add, subtract, multiply, and divide
- Each of the instructions will need a number,

Opcode	Meaning
00	Add
01	Subtract
10	Multiply
11	Divide

- Next, let's assume that our computer has four registers, numbered 0 through 3, and 256 8-bit memory cells
- An instruction will be encoded as: the first two bits represent the instruction, the next two bits encode the "destination register", the next four bits encode the registers containing two operands
- For example, the instruction add 302 (meaning add the contents of register 2 with the contents of register 0 and store the result in register 3) will be encoded as 00110010

von Neumann Architecture

- Our computer operates by repeatedly performing the following procedure

1. Send the address in the program counter (commonly called the PC) to the memory, asking it to read that location
2. Load the value from memory into the instruction register
3. Decode the instruction register to determine what instruction to execute and which registers to use
4. Execute the requested instruction, which involves reading operands from registers, performing arithmetic, and sending the results back to the destination register
5. Increment PC so that it contains the address of the next instruction in memory

Program Counter Instruction Register	00000000
	00100001
Register 0	00000101
Register 1	00000010
Register 2	00000111
Register 3	00000000

Central Processing Unit (CPU)

| Location
 (Binary) | | (Base 10) |
| :---: | ---: | :---: | Contents

Memory

Assembly Language

- A low-level programming language for computers
- More readable, English-like abbreviations for instructions
- Architecture-specific
- Example:

```
MOV AL, 61h
MOV AX, BX
ADD EAX, }1
XOR EAX, EAX
```


Summary: Components of a Computer

- Sequential execution of machine instructions
- The sequence of instructions are stored in the memory.
- One instruction at a time is fetched from the memory to the control unit.
- They are read in and treated just like data.

- PC (program counter) is responsible from the flow of control.
- PC points a memory location containing an instruction on the sequence.
- Early programmers (coders) write programs via machine instructions.

Lecture Overview

- Building a Computer
- The Harvey Mudd Miniature Machine (HMMM)

The Harvey Mudd Miniature Machine (HMMM)

- HMMM
- A Simple HMMM Program
- Looping
- Functions
- HMMM Instruction Set

HMMM

- A real computer must be able to
- Move information between registers and memory
- Get data from the outside world
- Print results
- Make decisions
- The Harvey Mudd Miniature Machine (HMMM) is organized as follows
- Both instructions and data are 16 bit wide
- In addition to the program counter and instruction register, there are 16 registers named r0 through r15
- There are 256 memory locations
- Instead of programming in binary (0's and 1's), we'll use assembly language, a programming language where each instruction has a symbolic representation
- For example, to compute $r 3=r 1+r 2$, we'll write add r3 r1 r2
- We'll use a program to convert the assembly language into 0's and 1's - the machine language - that the computer can execute

A Simple HMMM Program

triangle1.hmmm: Calculate the approximate area of a triangle.

0	read	r1		\# Get base b				
1	read	r2			\# Get height h			
2	mul	r1	r1	r2	\# b times h into	r1		
3	setn	r2	2					
4	div	r1	r1	r2	\# Divide by 2			
5	write	r1						

Assemble! \rightarrow

```
--------------------
```

| ASSEMBLY SUCCESSFUL |

0	0000	0001	0000	0001	0	read	r1		Get base b
1	0000	0010	0000	0001	1	read	r2		h
2	1000	0001	0001	0010	2	mul	r1	r1	into
3	0001	0010	0000	0010	3	setn	r2	2	
4	1001	0001	0001	0010	4	div		r1	2
5	0000	0001	0000	0010	5	write	r1		
6	0000	0000	0000	0000	6	halt			

Simulate! - ,

Looping

- Unconditional jump (jumpn N): set program counter to address N
triangle2.hmmm: Calculate the approximate areas of many triangles.

Simulate! \rightarrow

4
5
10
5
5
12
<ctrl-d>
End of input, halting program execution...

Looping

- Conditional jump (jeqzn $r X$) : if $r X==0$, then jump to line N
triangle3.hmmm: Calculate the approximate areas of many triangles. Stop when a base or height of zero is given.

```
0 read r1 # Get base b
1 jeqzn r1 9 # Jump to halt if base is zero
2 read r2 # Get height h
3 jeqzn r2 9 # Jump to halt if height is zero
4 mul r1 r1 r2 # b times h into r1
5 setn r2 2
6 div r1 r1 r2 # Divide by 2
7 write r1
8 jumpn 0
9 halt
```


Simulate! - -

```
4
5
10
5
5
12
0
```


Looping

is_it_a_prime_number.hmmm: Calculate whether a given positive number is prime or not

```
read r1 m m read the number. Please enter positive integers. 
sub r15 r1 r9
jeqz r15 17 # check if the number is 1
div r3 r1 r2 # Divide to 2. The biggest divider (denominator) should (may) be this number.
nop # there is no reason. Deleted a line, but too lazy to change all the line numbers.
    # the number is 2 or 3. So it is prime.
    sub r15 r3 r9
    jeqz r15 15
    # The number is not 1, 2 or 3. The main loop starts here----------------------
    mod r15 r1 r3 # mod to check if the number is aliquot.
    jeqz r15 17 # it is not a prime number. Jump to line 17.
    sub r3 r3 r9 # subtract one from the divider
    sub r5 r3 r9 # subtract one, but on a different register to check the divider is 1 or not.
    jeqz r5 15 # we succesfully reduced the divider to 1. This is a prime number. Jump to line 15.
    jumpn 9 # jump to the start of the main loop.
    #---------------------------------- Write 1 for prime numbers.
    write r9 # r9 is already 1.
    Halt
    #--------------------------------- Write 0 for non-prime numbers.
    setn r8 0
    write r8
    halt
```


Simulate! \rightarrow

Functions

- Call a function (calln rX N): copy the next address (aka return address) into $r X$ and then jump to address N
- Return from a function (jumpr rX): set program counter to the return address in $r X$
- By convention, we use register r14 to store the return address
square.hmmm: Calculate the square of a number N.

```
0 read r1 # Get N
1 calln r14 5 # Calculate N^2
2 write r2 # Write answer
3 halt
4 nop # Waste some space
# Square function. N is in r1. Result (N^2) is in r2. Return address is in r14.
5 mul r2 r1 r1 # Calculate and store N^2 in r2
6 jumpr r14 # Done; return to caller
```


Simulate! - -

Functions

combinations.hmmm: Calculate $C(N, K)$ (aka N choose K) defined as $C(N, K)=N!/(K!(N-K)$!), where N ! (N factorial) is defined as $N!=N \times(N-1) \times(N-2) \times \cdots \times 2 \times 1$, with $0!=1$.

0	read	r3	\# Get N
1	read	r4	\# Get K
2	copy	r1 r3	\# Calculate N!
3	calln	r14 15	\#
4	copy	r5 r2	\# Save N! as C (N, K)
5	copy	r1 r4	\# Calculate K!
6	calln	r14 15	\#
7	div	r5 r5 r2	\# N!/K!
8	sub	r1 r3 r4	\# Calculate (N - K) !
9	calln	r14 15	\#
10	div	r5 r5 r2	\# C (N, K)
11	write	r5	\# Write answer
12	halt		
13	nop		\# Waste some space
14	nop		

```
# Factorial function. N is in r1. Result is r2. Return address is in r14.
15 setn r2 1 # Initial product
16 jeqzn r1 20 # Quit if N has reached zero
17 mul r2 r1 r2 # Update product
18 addn r1 -1 # Decrement N
19 jumpn 16 # Back for more
20 jumpr r14 # Done; return to caller
```


Simulate! -

Functions

Trace of the factorial function ($\mathrm{N}=4$)

Trace of the program ($\mathrm{N}=5, \mathrm{~K}=2$)

instruction		r1	r2	r3	r4	r5	r14
0 read r3			5				
1 read r4			5	2			
2 copy r1 r3	5		5	2			
3 calln r14 15	5	120	5	2		4	
4 copy r5 r2	5	120	5	2	120	4	
5 copy r1 r4	2	120	5	2	120	4	
6 calln r14 15	2	2	5	2	120	7	
7 div r5 r5 r2	2	2	5	2	60	7	
8 sub r1 r3 r4	3	2	5	2	60	7	
9 calln r14 15	3	6	5	2	60	10	
10 div r5 r5 r2	3	6	5	2	10	10	
11 write r5	3	6	5	2	10	10	
12 halt		3	6	5	2	10	10

HMMM Instruction Set

- System instructions

```
halt stop
read rX place user input in register rX
write rX print contents of register rX
nop do nothing
```

- Setting register data

```
setn rX N set register rX equal to the integer N (-128 to 127)
addn rX N add integer N (-128 to 127) to register rX
copy rX rY
    set rX=rY
```

- Arithmetic

```
add rX rY rZ set rX=rY+rZ
sub rX rY rZ set rX=rY-rZ
neg rX rY set rX=-rY
mul rX rY rZ setrX=rY*rZ
div rX rY rZ set rX=rY/rZ (integer division; no remainder)
mod rX rY rZ set rX=rY%rZ (returns the remainder of integer division)
```


HMMM Instruction Set

- Jumps

```
jumpn N set program counter to address N
jumpr rX set program counter to address in rX
jeqzn rX N if rX==0, then jump to line N
jnezn rX N if rX!=0, then jump to line N
jgtzn rX N if rX>0, then jump to line N
jltzn rX N if rX<0, then jump to line N
calln rX N copy the next address into rX and then jump to address N
```

- Interacting with memory
loadn $r X \quad \mathrm{~N}$ load register $r \mathrm{X}$ with the contents of address N
storen $r X \quad N$ store contents of register rX into address N
loadr $r X r Y$ load register $r X$ with data from the address location held in register $r Y$ storer $r X \quad r Y$ store contents of register $r X$ into address held in register ry

