
Lecture	#04	–Control	Flow,	Functions

Erkut Erdem,	Aykut	Erdem	&	Aydın	Kaya	//	Fall	2017

BBM	101
Introduction	to	
Programming	I

Wikimedia	Commons

Last	time… Control	Flow,	Functions

2

Repeating	yourself

Making	decisions

Functions
def dbl_plus(x):

return 2*x + 1

if val < 0:
result = - val

else:
result = val

for f in [30,40,50]:
print(f,(f-32)/9.0*5)

counter = 1
while counter <= n:

s = s + counter
counter += 1

if height > 100:
print("space")

elif height > 50:
print("mesosphere")

elif height > 20:
print("stratosphere")

else:
print("troposphere")

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

3

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

4

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

Data	Structures
• A	data	structure is	way	of	organizing	data
– Each	data	structure	makes	certain	operations	
convenient	or	efficient

– Each	data	structure	makes	certain	operations	
inconvenient	or	inefficient

• Example:	What	operations	are	efficient	with:
– a	file	cabinet	sorted	by	date?
– a	shoe	box?

A	Collection	Groups	Similar	Things
• List:	ordered
• Set:	unordered,	no	duplicates
• Tuple:	unmodifiable list
• Dictionary:		maps	from	values	to	values

Example:	word	→	definition

Lecture	Overview
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

• File	I/O

7

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

What	is	a	List?
• A	list	is	an	ordered	sequence	of	values,	where	each	
value	is	identified	by	an	index.	

• What	operations	should	a	list	support	efficiently	and	
conveniently?
– Creation
– Querying
– Modification

8

List	Creation
a = [3, 1, 2*2, 1, 10/2, 10-1]

b = [5, 3, 'hi']

c = [4, 'a', a]

a = [3, 4, 5]

• Use	square	brackets	to	specify	a	list.
• Separate	each	element	with	a	comma.
• The	empty	list	is	written	as	[].	

9

List	Example	- 1
L = ['I did it all', 4, 'love']

for i in range(len(L)):
print(L[i])

>> I did it all
>> 4
>> love

10

List	Example	- 2
Techs = ['MIT', 'Caltech']
Ivys = ['Harvard', 'Yale', 'Brown']
Univs = [Techs,Ivys]
Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']]

print('Univs =', Univs)
print('Univs1 =', Univs1)
print(Univs == Univs1)

>> Univs = [['MIT','Caltech'],['Harvard','Yale','Brown']]
>> Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']]
>> True

11

List	Querying
• Extracting	part	of	the	list:
– Single	element:		mylist[index]
– Sublist (“slicing”):		mylist[startidx : endidx]

• Find/lookup	in	a	list
– elt in mylist
• Evaluates	to	a	boolean value

– mylist.index(x)
• Return	the	int index	in	the	list	of	the	first	item	whose	value	is	x.		
It	is	an	error	if	there	is	no	such	item.

– list.count(x)
• Return	the	number	of	times	x	appears	in	the	list.

12

List	Mutation
• Insertion
• Removal
• Replacement
• Rearrangement

13

List	Insertion
• mylist.append(x)

– Extend	the	list	by	inserting	x	at	the	end

• mylist.extend(L)
– Extend	the	list	by	appending	all	the	items	in	the	argument	list

• mylist.insert(i, x)
– Insert	an	item	before	the	a	given	position.
– a.insert(0,	x)	inserts	at	the	front	of	the	list
– a.insert(len(a),	x)	is	equivalent	to	a.append(x)

14

Notation	from	the	Python	Library	Reference:
The	square	brackets	around	the	parameter,	“[i]”,	means	the	argument	is	optional.
It	does	notmean	you	should	type	square	brackets	at	that	position.

List	Removal
• list.remove(x)

– Remove	the	first	item	from	the	list	whose	value	is	x
– It	is	an	error	if	there	is	no	such	item

• list.pop([i])
– Remove	the	item	at	the	given	position	in	the	list,	and	return	it.
– If	no	index	is	specified,	a.pop()	removes	and	returns	the	last	item	in	the	list.

15

List	Replacement
• mylist[index] = newvalue

• mylist[start : end] = newsublist
– Can	change	the	length	of	the	list
– mylist[start	:	end]	=	[]	 #	removes	multiple	elements
– a[len(a):]	=	L	 #	is	equivalent	to	a.extend(L)

16

List	Rearrangement
• list.sort()

– Sort	the	items	of	the	list,	in	place.
– “in	place”	means	by	modifying	the	original	list,	not	by	creating	a	new	

list.

• list.reverse()
– Reverse	the	elements	of	the	list,	in	place.

17

Index	
expression

How	to	Evaluate	a	List	Expression

There	are	two	new	forms	of	expression:
• [a, b, c, d] list	creation

– To	evaluate:
• evaluate	each	element	to	a	value,	from	left	to	right
• make	a	list	of	the	values

– The	elements	can	be	arbitrary	values,	including	lists
• ["a",	3,	3.14*r*r,	fahr_to_cent(-40),	[3+4,	5*6]]

• a[b] list	indexing or	dereferencing
– To	evaluate:

• evaluate	the	list	expression	to	a	value
• evaluate	the	index	expression	to	a	value
• if	the	list	value	is	not	a	list,	execution	terminates	with	an	error
• if	the	element	is	not	in	range	(not	a	valid	index),	execution	terminates	
with	an	error

• the	value	is	the	given	element	of	the	list	value	(counting	from	zero)

List	
expression

Same	tokens	“[]”	
with	two	distinct
meanings

18

List	Expression	Examples

What	does	this	mean	(or	is	it	an	error)?

["four", "score", "and", "seven", "years"][2]

["four", "score", "and", "seven", "years"][0,2,3]

["four", "score", "and", "seven", "years"][[0,2,3]]

["four", "score", "and", "seven", "years"][[0,2,3][1]]

19

Exercise:		List	Lookup
def index(somelist, value):

"""Return the position of the first occurrence of
the element value in the list somelist.
Return None if value does not appear in
somelist."""

i = 0
for c in somelist:
if c == value:
return i

i = i + 1
return None

20

Exercise:		List	Lookup
def index(somelist, value):

"""Return the position of the first occurrence of
the element value in the list somelist.
Return None if value does not appear in
somelist."""

Examples:
gettysburg = ["four", "score", "and",
"seven", "years", "ago"]

index(gettysburg, "and") =>	2
index(gettysburg, "years") =>	4

Fact:		mylist[index(mylist, x)] == x

21

List	Slicing
mylist[startindex : endindex] evaluates	to	a	
sublist of	the	original	list

– mylist[index] evaluates	to	an	element of	the	original	list

• Arguments	are	like	those	to	the	range function
– mylist[start : end : step]

– start	index	is	inclusive,	end	index	is	exclusive
– All 3	indices	are	optional

• Can	assign	to	a	slice:		mylist[s : e] = yourlist

22

List	Slicing	Examples
test_list = ['e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6']

From e2	to	the	end	of	the	list:	 test_list[2:]

From beginning up	to	(but	not	including)	e5: test_list[:5]

Last	element: test_list[-1]

Last	four	elements: test_list[-4:]

Everything except last	three elements: test_list[:-3]

Reverse	the	list: test_list[::-1]

Get	a	copy	of	the	whole	list: test_list[:]

23

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

24

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

Sets
• Mathematical	set:		a	collection	of	values,	without	duplicates	

or	order

• Order	does	not	matter
{	1,	2,	3	}	==	{	3,	2,	1	}

• No	duplicates
{	3,	1,	4,	1,	5	}	==	{	5,	4,	3,	1	}

• For	every	data	structure,	ask:
– How	to	create
– How	to	query	(look	up)	and	perform	other	operations

• (Can	result	in	a	new	set,	or	in	some	other	datatype)
– How	to	modify

Answer:		http://docs.python.org/3/library/stdtypes.html#set

3

2

1

1

4

3

5

25

Creating	a	Set
• Construct	from	a	list:

odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

Python	always	prints using	this	syntax	above

26

Set	Operations
odd = set([1, 3, 5])
prime = set([2, 3, 5])

• membership	Î Python:	in 4 in prime Þ False
• union	È Python:	| odd | prime Þ {	1,	2,	3,	5	}
• intersection		Ç Python:	& odd & prime Þ {	3,	5	}
• difference	\ or	- Python:	- odd – prime Þ {	1	}

Think	in	terms	of	set	operations,
not in	terms	of	iteration	and	element	operations

– Shorter,	clearer,	less	error-prone,	faster

Although	we	can	do	iteration	over	sets:
iterates over items in arbitrary order
for item in myset:
…

But	we	cannot index	into	a	set	to	access	a	specific	element.

27

Modifying	a	Set
• Add one	element	to	a	set:

myset.add(newelt)
myset = myset | set([newelt])

• Remove one	element	from	a	set:
myset.remove(elt) #	elt must	be	in	myset or	raises	err
myset.discard(elt) #	never	errs

What	would	this	do?
myset = myset – set([newelt])

• Choose	and	remove	some	element	from	a	set:
myset.pop()

28

Practice	with	Sets
z = set([5,6,7,8])
y = set([1,2,3,"foo",1,5])
k = z & y
j = z | y
m = y – z
z.add(9)

29

z: {8, 9, 5, 6, 7}
y: {1, 2, 3, 5, 'foo'}
k: {5}
j: {1, 2, 3, 5, 6, 7, 8, 'foo'}
m: {1, 2, 3, 'foo'}

List	vs.	Set	Operations	(1)
Find	the	common	elements	in	both	list1	and	list2:
out1 = []
for i in list2:

if i in list1:
out1 .append(i)

or

out1 = [i for i in list2 if i in list1]

Find	the	common	elements	in	both	set1	and	set2:
set1 & set2

Much	shorter,	clearer,	easier	to	write!
30

List	vs.	Set	Operations	(2)
Find	the	elements	in	either list1	or	list2	(or	both)	
(without	duplicates):

out2 = list(list1) # make a copy
for i in list2:

if i not in list1: # don’t append elements
out2.append(i) # already in out2

or
out2 = list1+list2
for i in out1: # out1 (from previous example),

out2.remove(i) # common elements in both lists
Remove common elements

Find	the	elements	in	either	set1	or	set2	(or	both):
set1 | set2

31

List	vs.	Set	Operations	(3)

Find	the	elements	in	either	list	but	not in	both:
out3 = []
for i in list1+list2:

if i not in list1 or i not in list2:
out3.append(i)

Find	the	elements	in	either	set	but	not	in	both:

set1 ^ set2 #	symmetric	difference

32

• Set	elements	must	be	immutable	values
– int,	float,	bool,	string,	tuple
– not:		list,	set,	dictionary

• Goal:		only	set	operations	change	the	set
– after	“myset.add(x)”,		x in mysetÞ True
– y in myset always	evaluates	to	the	same	value
Both	conditions	should	hold	until	myset itself	is	changed

33

Set	Elements

• Mutable	elements	can	violate	these	goals

list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]
myset = { list1 } Ü Hypothetical;	actually	illegal	in	Python
list1 in myset Þ True
list3 in myset Þ True	
list2.append("c") Ümodifying	myset “indirectly”	would

lead	to	different	results

list1 in myset Þ ???
list3 in myset Þ ???

34

Set	Elements

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

35

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

Tuples
• Like	strings,	tuples	are	ordered	sequences	of	elements.	
• The	individual	elements	can	be	of	any	type,	and	need	not	be	

of	the	same	type	as	each	other.	
• Literals	of	type	tuple	are	written	by	enclosing	a	comma-

separated	list	of	elements	within	parentheses.	
• Tuples	differ	from	lists	in	one	hugely	important	way:	

– Lists	are	mutable.	In	contrast,	tuples	are	immutable.	

• t1 = ()
t2 = (1, 'two', 3)
print(t1)
print(t2)

>> ()
>> (1, 'two', 3)

36

Tuples
• Like	strings,	tuples	can	be	concatenated,	indexed,	and	sliced.	

• t1 = (1, 'two', 3)
t2 = (t1, 3.25)
print(t2)
print((t1 + t2))
print((t1 + t2)[3])
print((t1 + t2)[2:5])

>> ((1, 'two', 3), 3.25)
>> (1, 'two', 3, (1, 'two', 3), 3.25)
>> (1, 'two', 3)
>> (3, (1, 'two', 3), 3.25)

37

Tuples
• A	for	statement	can	be	used	to	iterate	over	the	elements	of	a	tuple.	
• The	following	code	prints	the	common	divisors	of	20	and	100	and	then	the	

sum	of	all	the	divisors.	

• def findDivisors (n1, n2):
"""Assumes n1 and n2 are positive ints

Returns a tuple containing all common divisors
of n1 & n2"""

divisors = () #the empty tuple
for i in range(1, min (n1, n2) + 1):

if n1%i == 0 and n2%i == 0:
divisors = divisors + (i,)

return divisors

divisors = findDivisors(20, 100)
print(divisors)
total = 0
for d in divisors:

total += d
print(total)

38

>> (1, 2, 4, 5, 10, 20)
>> 42

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

39

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

Dictionaries	or	Mappings
• A	dictionary	maps	each	key to	a	value
• Order	does	not	matter
• Given	a	key,	can	look	up	a	value

– Given	a	value,	cannot	look	up	its	key

• No	duplicate	keys
– Two	or	more	keys	may	map	to	the	same	value

• Keys and	values are	Python	values
– Keys	must	be	immutable (not	a	list,	set,	or	dict)

• Can	add	key	→	value	mappings	to	a	dictionary
– Can	also	remove	(less	common)

5	→	25

7 →	49

6 →	36

1783	→	“Revolutionary”

1848	→	“Mexican”

1865	→	“Civil”

“Revolutionary”	→

“Mexican” →

“Civil”	→

1783

1861

18481846

1775

1865

5	→	25

7 →	49

6 →	36

“Revolutionary”	→
“Mexican” →

“Civil”	→

1783

1861

18481846

1775

1865

“WWI”	→ 19181917

add	
mapping

7 →	49

-7	→	49
49	→	7

49	→	-7

40

Dictionary	Syntax	in	Python
d = { }
d = dict()

us_wars_by_end = {
1783: "Revolutionary",
1848: "Mexican",
1865: "Civil" }

us_wars_by_name = {
"Civil" : [1861, 1865],
"Mexican" : [1846, 1848],
"Revolutionary" : [1775, 1783]

}

Syntax	just	like	arrays,	for	accessing	and	setting:
us_wars_by_end[1783] Þ
us_wars_by_end[1783][1:10] Þ
us_wars_by_name["WWI"] = [1917, 1918]

1783	→	“Revolutionary”

1848	→	“Mexican”

1865	→	“Civil”

“Revolutionary”	→

“Mexican” →

“Civil”	→

1783

1861

18481846

1775

1865

41

Two	different	ways	
to	create	an	empty	

dictionary

Creating	a	Dictionary

>>> state = {"Atlanta" : "GA", "Seattle" : "WA"}

>>> phonebook = dict()
>>> phonebook["Alice"] = "206-555-4455"
>>> phonebook["Bob"] = "212-555-2211"

>>> atomicnumber = {}
>>> atomicnumber["H"] = 1
>>> atomicnumber["Fe"] = 26
>>> atomicnumber["Au"] = 79

“Atlanta”	→	“GA”

“Seattle”	→	“WA”

“Alice”	→	“206-555-4455”

“Bob”	→	“212-555-1212”

“H”	→	1

“Fe”	→	26

“Au”	→	79
42

Accessing	a	Dictionary
>>> atomicnumber = {"H":1, "Fe":26, "Au":79}
>>> atomicnumber["Au"]
79
>>> atomicnumber["B"]
Traceback (most recent call last):
File "<pyshell#102>", line 1, in <module>
atomicnumber["B"]

KeyError: 'B'
>>> atomicnumber.has_key("B")
False
>>> atomicnumber.keys()
['H', 'Au', 'Fe']
>>> atomicnumber.values()
[1, 79, 26]
>>> atomicnumber.items()
[('H', 1), ('Au', 79), ('Fe', 26)]

Good	for	iteration	(for	loops)

for key in mymap.keys():
val = mymap[key]
… use key and val

for key in mymap:
val = mymap[key]
… use key and val

for (key,val) in mymap.items():
… use key and val

“H”	→	1

“Fe”	→	26

“Au”	→	79

43

Iterating	Through	a	Dictionary
atomicnumber = {"H":1, "Fe":26, "Au":79}

Print out all the keys:
for element_name in atomicnumber.keys():

print(element_name)

Another way to print out all the keys:
for element_name in atomicnumber:

print(element_name)

Print out the keys and the values
for (element_name, element_number) in atomicnumber.items():

print("name:",element_name, "number:",element_number)

44

H
Fe
Au

name: H number: 1
name: Fe number: 26
name: Au number: 79

H
Fe
Au

Modifying	a	Dictionary
us_wars1 = {

"Revolutionary" : [1775, 1783],
"Mexican" : [1846, 1848],
"Civil" : [1861, 1865] }

us_wars1["WWI"] = [1917, 1918] #	add	mapping
us_wars1.pop("Mexican”) #	remove	mapping

“Revolutionary”	→

“Mexican” →

“Civil”	→

1783

1861

18481846

1775

1865

“Revolutionary”	→
“Mexican” →

“Civil”	→

1783

1861

18481846

1775

1865

“WWI”	→ 19181917

add	
mapping

45

Dictionary	Exercises
• Convert	a	list	to	a	dictionary:

– Given	[5,	6,	7],	produce	{5:25,	6:36,	7:49}

• Reverse	key	with	value	in	a	dictionary:
– Given	{5:25,	6:36,	7:49},	produce	{25:5,	36:6,	49:7}

• What	does	this	do?

squares = { 1:1, 2:4, 3:9, 4:16 }
squares[3] + squares[3]
squares[3 + 3]
squares[2] + squares[2]
squares[2 + 2]

46

Dictionary	Exercise	Solutions
• Convert	a	list	to	a	dictionary:
– E.g.	Given	[5,	6,	7],	produce	{5:25,	6:36,	7:49}
d = {}
for i in [5, 6, 7]: # or range(5, 8)

d[i] = i * i

• Reverse	key	with	value	in	a	dictionary:
– E.g.	Given	{5:25,	6:36,	7:49},	produce	{25:5,	36:6,	49:7}

k ={}
for i in d.keys():

k[d[i]] = i

47

A	list	is	like	a	dictionary
• A	list	maps	an	integer	to	a	value
– The	integers	must	be	a	continuous	range	0..i

mylist = ['a', 'b', 'c']
mylist[1] Þ 'b'
mylist[3] = 'c' #	error!

• In	what	ways	is	a	list	more convenient	than	a	dictionary?

• In	what	ways	is	a	list	less convenient	than	a	dictionary?

48

Not	Every	Value	is	Allowed	to	be	a	Key	- 1

• Keys	must	be	immutable	values
– int,	float,	bool,	string,	tuple
– not:		list,	set,	dictionary

• Goal:		only	dictionary	operations	change	the	keyset
– after	“mydict[x] = y”,	 mydict[x]Þ y
– if	a == b,	then	mydict[a] == mydict[b]
These	conditions	should	hold	until	mydict itself	is	changed

49

Not	Every	Value	is	Allowed	to	be	a	Key	- 2

• Mutable	keys	can	violate	these	goals

list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]
mydict = {}
mydict[list1] = "z" Ü Hypothetical;	actually	illegal	in	Python
mydict[list3] Þ "z"
list2.append("c")
mydict[list1] Þ ???
mydict[list3] Þ ???

50

Lecture	Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File	I/O

51

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—Ruth	Anderson,	Michael	Ernst	and	Bill	Howe’s		CSE	140	class

File	Input	and	Output

• As	a	programmer,	when	would	one	use	a	file?
• As	a	programmer,	what	does	one	do	with	a	file?

Important	operations:
• open	a	file
• close	a	file
• read	data
• write	data

52

Files	and	Filenames

• A	file object	represents	data	on	your	disk	drive
– Can	read	from	it	and	write	to	it

• A	filename (usually	a	string)	states	where	to	find	the	data	
on	your	disk	drive
– Can	be	used	to	find/create	a	file

• Each	operating	system	comes	with	its	own	file	system	for	
creating	and	accessing	files:
– Linux/Mac:	"/home/rea/bbm101/lectures/file_io.pptx"
– Windows:	"C:\Users\rea\MyDocuments\cute_dog.jpg"

53

Two	Types	of	Filenames
• An Absolute filename	gives	a	specific	location	on	disk:	

"/home/rea/bbm101/14wi/lectures/file_io.pptx" or	
"C:\Users\rea\MyDocuments\homework3\images\Husky.png"

– Starts	with	“/”	(Unix)	or	“C:\”	(Windows)
– Warning:		code	will	fail	to	find	the	file	if	you	move/rename	files	or	

run	your	program	on	a	different	computer

• A Relative filename	gives	a	location	relative	to	the	current	
working	directory:
"lectures/file_io.pptx" or	" images\Husky.png"
– Warning:		code	will	fail	to	find	the	file	unless	you	run	your	program	

from	a	directory	that	contains	the	given	contents

• A	relative	filename	is	usually	a	better	choice

54

Examples
Linux/Mac:	These	could all	refer	to	the	same	file:
"/home/rea/class/140/homework3/images/Husky.png"

"homework3/images/Husky.png"
"images/Husky.png"
"Husky.png"

Windows:		These	could all	refer	to	the	same	file:
"C:\Users\rea\My Documents\class\140\homework3\images\Husky.png"
"homework3\images\Husky.png"
"images\Husky.png"
"Husky.png"

55

“Current	Working	Directory”	in	Python

The	directory	from	which	you	ran	Python

To	determine	it	from	a	Python	program:
>>> import os # "os" stands for "operating system"
>>> os.getcwd()
'/Users/johndoe/Documents'

Can	be	the	source	of	confusion:		where	are	my	files?

56

Reading	a	File	in	Python

Open takes a filename and returns a file.
This fails if the file cannot be found & opened.
myfile = open("datafile.dat")

Approach 1:
for line_of_text in myfile:
… process line_of_text

Approach 2:
all_data_as_a_big_string = myfile.read()

myfile.close() # close the file when done reading

Assumption:	file	is	a	sequence	of	lines
Where	does	Python	expect	to	find	this	file	(note	the	relative	pathname)?

57

Reading	a	File	Example

Count the number of words in a text file
in_file = "thesis.txt"
myfile = open(in_file)
num_words = 0
for line_of_text in myfile:

word_list = line_of_text.split()
num_words += len(word_list)

myfile.close()

print("Total words in file: ", num_words)

58

Reading	a	File	Multiple	Times

You	can	iterate	over	a	list as	many	times	as	
you	like:
mylist = [3, 1, 4, 1, 5, 9]
for elt in mylist:
… process elt

for elt in mylist:
… process elt

Iterating	over	a	file uses	it	up:
myfile = open("datafile.dat")
for line_of_text in myfile:

… process line_of_text
for line_of_text in myfile:

… process line_of_text

How	to	read	a	filemultiple	times?

Solution	1:		Read	into	a	list,	then	iterate	over	it
myfile = open("datafile.dat")
mylines = []
for line_of_text in myfile:
mylines.append(line_of_text)

… use mylines

Solution	2: Re-create	the	file	object	
(slower,	but	a	better	choice	if	the	file	does	not	fit	
in	memory)
myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

59

This	loop	body	will	
never	be	executed!

Writing	to	a	File	in	Python

# Replaces	any	existing	file	of	this	name
myfile = open("output.dat", "w")

# Just	like	printing	output
myfile.write("a bunch of data")
myfile.write("a line of text\n")

myfile.write(4)
myfile.write(str(4))

myfile.close()

open	for	Writing
(no	argument,	or	
"r",	for	Reading)

“\n”	means	
end	of	line	
(Newline)

Wrong;	results	in:
TypeError: expected a character buffer object

Right.		Argument	
must	be	a	string

60

close	when	done	
with	all	writing

More	Examples	- 1
nameHandle = open('characters.txt', 'w')
for i in range(2):

name = input('Enter name: ')
nameHandle.write(name + '\n')

nameHandle.close()

nameHandle = open('characters.txt', 'r')
for line in nameHandle:

print(line)
nameHandle.close()

61

• If	we	had	typed	in	the	names	Rick	and	Morty,	this	will	print	
Rick

Morty

• The	extra	line	between	Rick	and	Morty is	there	because	print	starts	a	new	line	
each	time	it	encounters	the	'\n'	at	the	end	of	each	line	in	the	file.	

More	Examples	- 2
nameHandle = open('characters.txt', 'w')
nameHandle.write('Jerry\n')
nameHandle.write('Beth\n')
nameHandle.close()

nameHandle = open('characters.txt', 'r')
for line in nameHandle:

print line[:-1]
nameHandle.close()

62

• It	will	print
Jerry
Beth

• Notice	that	
• we	have	overwritten	the	previous	contents	of	the	file	kids.	
• print line[:-1] avoids	extra	newline	in	the	output

More	Examples	- 3
nameHandle = open('characters.txt', 'a')
nameHandle.write('Rick\n')
nameHandle.write('Morty\n')
nameHandle.close()

nameHandle = open('kids', 'r')
for line in nameHandle:

print line[:-1]
nameHandle.close()

63

• It	will	print
Jerry
Beth
Rick
Morty

• Notice	that	we	can	open	the	file	for	appending	(instead	of	writing)	by	using	
the	argument	'a'.

Common	functions	for	accessing	files
• open(fn, 'w') fn is	a	string	representing	a	file	name.	

Creates	a	file	for	writing	and	returns	a	file	handle.	

• open(fn, 'r') fn is	a	string	representing	a	file	name.	Opens	
an	existing	file	for	reading	and	returns	a	file	handle.	

• open(fn, 'a') fn is	a	string	representing	a	file	name.	Opens	
an	existing	file	for	appending	and	returns	a	file	handle.	

• fh.close() closes	the	file	associated	with	the	file	handle	fh.	

64

Common	functions	for	accessing	files
• fh.read() returns	a	string	containing	the	contents	of	the	file	

associated	with	the	file	handle	fh.	

• fh.readline() returns	the	next	line	in	the	file	associated	
with	the	file	handle	fh.	

• fh.readlines() returns	a	list	each	element	of	which	is	one	
line	of	the	file	associated	with	the	file	handle	fh.	

• fh.write(s) write	the	string	s	to	the	end	of	the	file	
associated	with	the	file	handle	fh.	

• fh.writeLines(S) S	is	a	sequence	of	strings.	Writes	each	
element	of	S	to	the	file	associated	with	the	file	handle	fh.

65

