
Lecture	#06	– Recursion

Erkut Erdem,	Aykut	Erdem	&	Aydın	Kaya	//	Fall	2017

BBM	101
Introduction	to	
Programming	I

Last	time… Collections,	File	I/O

2

Lists

Sets

Tuples
t1 = (1, 'two', 3)
t2 = (t1, 3.25)
t3 = (t2, t1)

odd = set([1, 3, 5])
prime = set([2, 5])
empty = set([])

a = [3, 2*2, 10-1]
b = [5, 3, 'hi']
c = [4, 'a', a]

Dictionaries
c = {"Ankara":"TR","Paris":"FR"}
pb = dict()
pb["Rick"] = "206-555-4455"

File	I/O
myfile = open("output.dat", "w")
myfile.write("a bunch of data")
myfile.write("a line of text\n")
myfile.close()

Lecture	Overview
• Notion	of	state	in	computation
• Recursion	as	a	programming	concept
• Mutual	recursion
• Recursion	tree
• Pitfalls	of	recursion

3

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—E.	Grimson,	J.	Guttag and	C.	Terman in	MITx 6.00.1x,	
—J.	DeNero in	CS	61A	(Berkeley),
—T.	Cortina	in	15110	Principles	of	Computing	(CMU)	
—R.	Sedgewick,	K.	Wayne	and	R.	Dondero (Princeton)

Recursion
• Recursion is	a	programming	concept	whereby	a	
function	invokes	itself.

• Recursion	is	typically	used	to	solve	problems	that	are	
decomposable	into	subproblems that	are	just	like	the	
original	problem,	but	a	step	closer	to	being	solved.

4

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)
4

Computation
• All	computation consists	of	chugging	along	
from	state to	state	to	state	...

• There	is	a	set	of	rules that	tell	us,	given	the	
current	state,	which	state	to	go	to	next.

5

Arithmetic	as	Rewrite	Rules

• 2 + 3 + 4
• 5 + 4
• 9

• Expression	evaluation.
• We	stop	when	we	reach	a	number.

6

Functions	as	New	Rules
def square(n):

return n * n

When	we	see: square(something)

Rewrite	it	as: something * something

7

Functions	as	Rewrite	Rules
def square(n):

return n * n

• square(3)
• 3 * 3
• 9

8

Piecewise	Functions
f(n) = 1 if n = 1

n - 1 if n > 1

f(4)
4 - 1
3

9

In	Python
def f(n):

if n == 1:
return 1

else:
return n - 1

10

This	is	just	math,	right?
• Difference	between	mathematical	functions	and	

computation	functions.	Computation	functions	must	be	
effective.

• For	example,	we	can	define	the	square-root	function	as

√x =	the	y such	that	y ≥	0	and	y²	=	x

• This	defines	a	valid	mathematical	function,	but	it	doesn't	
tell	us	how	to	compute the	square	root	of	a	given	
number.

11

Fancier		Functions

def f(n):
return n + (n - 1)

Find	f(4)

12

def f(n):
return n + (n - 1)

def g(n):
return n + f(n - 1)

Find	g(4)

Fancier		Functions

13

def f(n):
return n + (n - 1)

def g(n):
return n + f(n - 1)

def h(n):
return n + h(n - 1)

Find	h(4)

Fancier		Functions

14

Recursion

def h(n):
return n + h(n - 1)

• h is	a	recursive function,
because	it	is	defined	in	terms	of	itself.

15

Definition
Recursion
• See:	"Recursion".

16

Recursion
def h(n):

return n + h(n - 1)

h(4)
4 + h(3)
4 + 3 + h(2)
4 + 3 + 2 + h(1)
4 + 3 + 2 + 1 + h(0)
4 + 3 + 2 + 1 + 0 + h(-1)
4 + 3 + 2 + 1 + 0 + -1 + h(-2)
...

Evaluating	h leads	to	an	infinite	loop!
17

What	you	are	thinking

"Ok,	recursion	is	bad.
What's	the	big	deal?"

18

Recursion

def f(n):
if n == 1:

return 1
else:

return f(n - 1)

Find	f(1)
Find	f(2)
Find	f(3)
Find	f(100)

19

Recursion

def f(n):
if n == 1:

return 1
else:

return f(n - 1)

f(3)
f(3 - 1)
f(2)
f(2 - 1)
f(1)
1

20

Terminology

def f(n):
if n == 1:

return 1
else:

return f(n - 1)

"Useful"	recursive	functions	have:
• at	least	one	recursive	case
• at	least	one	base	case
so	that	the	computation	terminates

base
case

recursive
case

21

Recursion

def f(n):
if n == 1:

return 1
else:

return f(n + 1)

Find	f(5)

We	have	a	base	case	and	a	recursive	case.		What's	wrong?

The	recursive	case	should	call	the	function	on	a	simpler	
input,	bringing	us	closer	and	closer	to	the	base	case.

22

Recursion

def f(n):
if n == 0:

return 0
else:

return 1 + f(n - 1)

Find	f(0)
Find	f(1)
Find	f(2)
Find	f(100)

23

Recursion

def f(n):
if n == 0:

return 0
else:

return 1 + f(n - 1)

f(3)
1 + f(2)
1 + 1 + f(1)
1 + 1 + 1 + f(0)
1 + 1 + 1 + 0
3

24

Iterative	algorithms
• Looping	constructs	(e.g.	while	or	for	loops)	
lead	naturally	to	iterative	algorithms	

• Can	conceptualize	as	capturing	computation	
in	a	set	of	“state	variables”	which	update	on	
each	iteration	through	the	loop	

25

Iterative	multiplication	by	successive	
additions
• Imagine	we	want	to	perform	multiplication	by	
successive	additions:	
– To	multiply	a	by	b,	add	a	to	itself	b	times	

• State	variables:
– i – iteration	number;	starts	at	b
– result	– current	value	of	computation;	starts	at	0	

• Update	rules
– i←i -1;	stop	when	0
– result ←	result	+	a	

26

Multiplication	by	successive	additions

def iterMul(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

27

Recursive	version

• An	alternative	is	to	think	of	this	computation	as:

a * b = a + a + ... + a

= a + a + ... + a

= a + a * (b – 1)

28

Recursive)version)

•  An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
)
)

=)a)+)a)+)…)+)a)
)
)

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

b copies

Recursive)version)

•  An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
)
)

=)a)+)a)+)…)+)a)
)
)

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

b-1 copies

Recursion
• This	is	an	instance	of	a	recursive	algorithm	

– Reduce	a	problem	to	a	simpler	(or	smaller)	version	of	the	
same	problem,	plus	some	simple	computations	
[Recursive	step]

– Keep	reducing	until	reach	a	simple	case	that	can	be	solved	
directly
[Base	case]

• a*b=a; if b=1
(Base	case)

• a * b = a + a * (b-1); otherwise
(Recursive	case)	

29

Recursive	Multiplication

def recurMul(a,b):
if b == 1:

return a
else:

return a + recurMul(a,b-1)

30

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +
recurMul(a,b-1)

31

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

Let’s	try	it	out
def recurMul(a,b):

if b == 1:
return a

else:
return a +
recurMul(a,b-1)

recurMul(2,3)

32

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

Let’s	try	it	out

33

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

def recurMul(a,b):
if b == 1:

return a
else:

return a +
recurMul(a,b-1)

recurMul(2,3)

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

a& 2&

b& 1&

Let’s	try	it	out

34

def recurMul(a,b):
if b == 1:

return a
else:

return a +
recurMul(a,b-1)

recurMul(2,3)

Let’s&try&it&out&
def recurMul(a, b):!
 if b == 1:!
 return a!
 else:!
 return a +
recurMul(a, b-1)!

!

recurMul(2,&3)&

recurMul& Procedure4&
&&(a,&b)&
&&&if&b&==&1:&
&&&&&&&return&a&
&&&else:&
&&&&&&&return&a&+&
recurMul(a,&b=1)&

a& 2&

b& 3&

a& 2&

b& 2&

a& 2&

b& 1&

4&

2&

6&

Let’s	try	it	out

35

def recurMul(a,b):
if b == 1:

return a
else:

return a +
recurMul(a,b-1)

recurMul(2,3)

The	Anatomy	of	a	Recursive	Function

36

def recurMul(a,b):
if b == 1:

return a
else:
return a + recurMul(a,b-1)

• The	def statement	header	is	similar	to	other	functions
• Conditional	statements	check	for	base	cases
• Base	cases	are	evaluated	without	recursive	calls
• Recursive	cases	are	evaluated	with	recursive	calls	

Inductive	Reasoning
• How	do	we	know	that	our	recursive	code	will	work?	
• iterMul terminates	because	b	is	initially	positive,	
and	decrease	by	1 each	time	around	loop;	thus	must	
eventually	become	less	than	1

• recurMul called	with	b = 1 has	no	recursive	call	
and	stops	

• recurMul called	with	b > 1 makes	a	recursive	
call	with	a	smaller	version	of	b;	must	eventually	
reach	call	with	b = 1

37

Mathematical	Induction
• To	prove	a	statement	indexed	on	integers	is	
true	for	all	values	of	n:	
– Prove	it	is	true	when	n	is	smallest	value	(e.g.	n	=	0	
or	n	=	1)	

– Then	prove	that	if	it	is	true	for	an	arbitrary	value	
of	n,	one	can	show	that	it	must	be	true	for	n+1	

38

Example
• 0+1+2+3+...+n=(n(n+1))/2	
• Proof	

– If	n	=	0,	then	LHS	is	0	and	RHS	is	0*1/2	=	0,	so	true	
– Assume	true	for	some	k,	then	need	to	show	that

• 0	+	1	+	2	+	...	+	k	+	(k+1)	=	((k+1)(k+2))/2
• LHS	is	k(k+1)/2	+	(k+1)	by	assumption	that	property	
holds	for	problem	of	size	k

• This	becomes,	by	algebra,	((k+1)(k+2))/2

– Hence	expression	holds	for	all	n	>=	0	

39

What	does	this	have	to	do	with	code?
• Same	logic	applies

def recurMul(a, b):
if b == 1:

return a
else:

return a + recurMul(a, b-1)

• Base	case,	we	can	show	that	recurMulmust	return	
correct	answer	

• For	recursive	case,	we	can	assume	that	recurMul
correctly	returns	an	answer	for	problems	of	size	
smaller	than	b,	then	by	the	addition	step,	it	must	
also	return	a	correct	answer	for	problem	of	size	b

• Thus	by	induction,	code	correctly	returns	answer
40

Sum	digits	of	a	number

41

Sum Digits Without a While Statement

6

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Verify	the	correctness	of	this	recursive	definition.

Some	Observations
• Each	recursive	call	to	a	function	creates	its	
own	environment,	with	local	scoping	of	
variables	

• Bindings	for	variable	in	each	frame	distinct,	
and	not	changed	by	recursive	call	

• Flow	of	control	will	pass	back	to	earlier	frame	
once	function	call	returns	value	

42

The	“classic”	Recursive	Problem
• Factorial
n! =	n	*	(n-1)	*	...	*	1	
=					1																	 if	n	=	0	

n	*	(n-1)! otherwise

43

Recursive)version)

• An)alterna0ve)is)to)think)of)this)computa0on)
as:)

a)*)b)=)a)+)a)+)…)+)a)
))

=)a)+)a)+)…)+)a)
))

=)a)+)a)*)(b)–)1))

b)copies)

b@1)copies)

Recursion	in	Environment	Diagrams

44

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

Recursion	in	Environment	Diagrams

45

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

Recursion	in	Environment	Diagrams

46

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times

Recursion	in	Environment	Diagrams

47

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call

Recursion	in	Environment	Diagrams

48

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call	

• What	n	evaluates	to	
depends	upon	the	current	environment

Recursion	in	Environment	Diagrams

49

Recursion in Environment Diagrams

9

(Demo)

Interactive Diagram

• The	same	function	fact	is	
called	multiple	times	

• Different	frames	keep	
track	of	the	different	
arguments	in	each	call	

• What	n	evaluates	to	
depends	upon	the	current	environment

• Each	call	to	fact	solves	a	simpler	problem	
than	the	last:	smaller	n

Iteration	vs	Recursion

50

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

Iteration	vs	Recursion

51

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

10

Iteration	vs	Recursion

52

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

10

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using while: Using recursion:

n, total, k, fact_iter

Math:

Names:

10

Recursion	on	Non-numerics
• How	could	we	check	whether	a	string	of	characters	is	
a	palindrome,	i.e.,	reads	the	same	forwards	and	
backwards	
– "Able was I ere I saw Elba"
attributed	to	Napolean

– "Are we not drawn onward, we few, drawn
onward to new era?"

– "Ey Edip Adana’da pide ye"

53

How	to	we	solve	this	recursive?
• First,	convert	the	string	to	just	characters,	by	stripping	
out	punctuation,	and	converting	upper	case	to	lower	
case	

• Then	
– a	string	of	length	0	or	1	is	a	palindrome	[Base	case]
– If	first	character	matches	last	character,	then	is	a	palindrome	
if	middle	section	is	a	palindrome	
[Recursive	case]

54

Example
• "Able was I ere I saw Elba" à
"ablewasiereisawelba”

• isPalindrome("ablewasiereisawelba")
is	same	as	
"a"=="a" and isPalindrome("blewasiereisawleb")

55

Palindrome	or	not?
def toChars(s):

s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

56

Palindrome	or	not?
def isPal(s):

if len(s) <= 1:
return True

else:
return s[0] == s[-1] and isPal(s[1:-1])

def isPalindrome(s):
return isPal(toChars(s))

57

Divide	and	Conquer
• This	is	an	example	of	a	“divide	and	conquer”	
algorithm	
– Solve	a	hard	problem	by	breaking	it	into	a	set	of	
sub-problems	such	that:	

– Sub-problems	are	easier	to	solve	than	the	original	
– Solutions	of	the	sub-problems	can	be	combined	to	
solve	the	original	

58

Global	Variables
• Suppose	we	wanted	to	count	the	number	of	times	
fac calls	itself	recursively	

• Can	do	this	using	a	global	variable	
• So	far,	all	functions	communicate	with	their	
environment	through	their	parameters	and	return	
values	

• But,	(though	a	bit	dangerous),	can	declare	a	variable	
to	be	global	– means	name	is	defined	at	the	
outermost	scope	of	the	program,	rather	than	scope	
of	function	in	which	appears	

59

Example
def facMetered(n):

global numCalls
numCalls += 1
if n == 0:

return 1
else:

return n * facMetered(n-1)

def testFac(n):
for i in range(n+1):

global numCalls
numCalls = 0
print('fac of ' + str(i) + ' = ' + str(facMetered(i)))
print('fac called ' + str(numCalls) + ' times')

testFac(4)

60

Global	Variables
• Use	with	care!!	
• Destroy	locality	of	code	
• Since	can	be	modified	or	read	in	a	wide	range	
of	places,	can	be	easy	to	break	locality	and	
introduce	bugs!!	

61

Mutual	Recursion
• Mutual	recursion is	a	form	of	recursion where	
two	functions	or	data	types	are defined in	
terms	of	each	other.

62

Mutual	Recursion	Example
def even(n):

if n == 0:
return True

else:
return odd(n - 1)

def odd(n):
if n == 0:

return False
else:

return even(n - 1)

even(4)

63

The	Luhn Algorithm
• A	simple	checksum	formula	used	to	validate	a	variety	
of	identification	numbers,	such	as	credit	card	
numbers,	IMEI	numbers,	etc.

64

The	Luhn Algorithm
• From	Wikipedia:	http://en.wikipedia.org/wiki/Luhn_algorithm
• First:	From	the	rightmost	digit,	which	is	the	check	digit,	

moving	left,	double	the	value	of	every	second	digit;	if	product	
of	this	doubling	operation	is	greater	than	9	(e.g.,	7	*	2	=	14),	
then	sum	the	digits	of	the	products	(e.g.,	10:	1	+	0	=	1,	14:	1	+	
4	=	5)	

• Second:	Take	the	sum	of	all	the	digits

• The	Luhn sum	of	a	valid	credit	card	number	is	a	multiple	of	10	
65

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

• First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)

• Second: Take the sum of all the digits

15

1 3 8 7 4 3

2 3 1+6=7 7 8 3 = 30

The	Luhn Algorithm
def luhn_sum(n):

"""Return the digit sum of n computed by the Luhn algorithm"""
if n < 10:

return n
else:

all_but_last, last = split(n)
return luhn_sum_double(all_but_last) + last

def luhn_sum_double(n):
"""Return the Luhn sum of n, doubling the last digit."""
all_but_last, last = split(n)
luhn_digit = sum_digits(2 * last)
if n < 10:

return luhn_digit
else:

return luhn_sum(all_but_last) + luhn_digit

66

Tree	Recursion
• Tree-shaped	processes	arise	whenever	executing	the	
body	of	a	recursive	function	makes	more	than	one	
recursive	call.

67

Tree	Recursion

• Fibonacci	numbers	
• Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge	
– Newborn	pair	of	rabbits	(one	female,	one	male)	are	put	in	
a	pen	

– Rabbits	mate	at	age	of	one	month	
– Rabbits	have	a	one	month	gestation	period	
– Assume	rabbits	never	die,	that	female	always	produces	
one	new	pair	(one	male,	one	female)	every	month	from	its	
second	month	on.	

– How	many	female	rabbits	are	there	at	the	end	of	one	
year?

68

Fibonacci

• After	one	month	(call	it	0)	– 1	female	
• After	second	month	– still	1	female	

(now	pregnant)	
• After	third	month	– two	females,	one	

pregnant,	one	not	
• In	general,	females(n)	=	females(n-1)	+	

females(n-2)	
– Every	female	alive	at	month	n-2	will	

produce	one	female	in	month	n;	
– These	can	be	added	those	alive	in	month	

n-1	to	get	total	alive	in	month	n	

69

Fibonacci*
•  AEer*one*month*(call*it*0)*–*1*female*
•  AEer*second*month*–*s0ll*1*female*

(now*pregnant)*
•  AEer*third*month*–*two*females,*one*

pregnant,*one*not*
•  In*general,*females(n)*=*females(nK1)*+*

females(nK2)*
–  Every*female*alive*at*month*nK2*will*
produce*one*female*in*month*n;*

–  These*can*be*added*those*alive*in*month*
nK1*to*get*total*alive*in*month*n*

Month* Females*

0* 1*

1* 1*

2* 2*

3* 3*

4* 5*

5* 8*

6* 13*

Fibonacci
• Base	cases:	

– Females(0)	=	1
– Females(1)	=	1	

• Recursive	case
– Females(n)	=	Females(n-1)	+	Females(n-2)	

70

Fibonacci	
def fib(n):
"""assumes n an int >= 0
returns Fibonacci of n"""
assert type(n) == int and n >= 0
if n == 0:

return 1
elif n == 1:

return 1
else:

return fib(n-2) + fib(n-1)

71

Tiling	Squares

Rewrite	rule:		Add	square	to	long	side.

72

Tiling	Squares

What	is	the	side	length	of	each	square?

73

Tiling	Squares

1 1
23

5
8

13

21

74

Spiral

75

Fibonacci

1 ÷ 1 =	1
2 ÷ 1 =	2
3 ÷ 2 =	1.5
5 ÷ 3 =	1.666...
8 ÷ 5 =	1.6
13÷ 8 =	1.625
21÷ 13=	1.615...
34÷ 21=	1.619...

76

Limit

What	is	the	limit	of

as	n approaches	infinity?

1.6180339887498948482...

What's	that	called?

fib(n)
fib(n - 1)

77

The	Golden	Ratio

The	proportions	of	a	rectangle	that,
when	a	square	is	added	to	it
results	in	a	rectangle
with	the	same	proportions.

Square+ = Square

78

The	Golden	Ratio

Square

φ

1

φ
1

1
φ - 1=

φ2 - φ - 1 = 0

1 + √5
2φ =

= 1.618...φ-1
79

Fibonacci

fib(n) = 1 n = 1, 2
fib(n-1) + fib(n-2) n > 2

fib(n) = φn - (1 - φ)n
√5

80

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

81

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

82

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

83

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

84

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

85

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

86

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

87

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

11

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Recursion	Tree

• The	computational	process	of	fib	evolves	into	a	tree	structure	

88

fib(5)
fib(4)
fib(3)
fib(2)

1	time
1	time
2	times
3	times

Pitfalls	of	Recursion
• With	recursion,	you	can	compose	compact	and	
elegant	programs	that	fail	spectacularly	at	runtime.

• Missing	base	case
• No	guarentee of	convergence
• Excessive	space	requirements
• Excessive	recomputation

89

Missing	base	case
def H(n):

return H(n-1) + 1.0/n;

• This	recursive	function	is	supposed	to	compute	
Harmonic	numbers,	but	is	missing	a	base	case.

• If	you	call	this	function,	it	will	repeatedly	call	itself	
and	never	return.

90

No	guarantee	of	convergence
def H(n):

if n == 1:
return 1.0

return H(n) + 1.0/n

• This	recursive	function	will	go	into	an	infinite	
recursive	loop	if	it	is	invoked	with	an	argument	n	
having	any	value	other	than	1.

• Another	common	problem	is	to	include	within	a	
recursive	function	a	recursive	call	to	solve	a	
subproblem that	is	not	smaller.

91

Excessive	space	requirements
• Python	needs	to	keep	track	of	each	recursive	call	to	

implement	the	function	abstraction	as	expected.	
• If	a	function	calls	itself	recursively	an	excessive	number	of	

times	before	returning,	the	space	required	by	Python	for	
this	task	may	be	prohibitive.	

def H(n):
if n == 0:

return 0.0
return H(n-1) + 1.0/n

• This	recursive	function	correctly	computes	the	nth	
harmonic	number.	

• However,	we	cannot	use	it	for	large n because	the	recursive	
depth	is	proportional	to n,	and	this	creates	
a StackOverflowError.

92

Excessive	recomputation
• A simple	recursive	program	might	require	exponential	time	

(unnecessarily),	due	to	excessive	recomputation.
• For	example,	fib	is	called	on	the	same	argument	multiple	

times	

93

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times

12

Recursive	Graphics
• Simple	recursive	drawing	schemes	can	lead	to	pictures	
that	are	remarkably	intricate	– Fractals

• For	example,	an H-tree	of	order	n is	defined	as	follows:	
– The	base	case	is	null	for n =	0.	
– The	reduction	step	is	to	draw,	within	the	unit	square	three	
lines	in	the	shape	of	the	letter	H	four	H-trees	of	order n-1.

– One	connected	to	each	tip	of	the	H	with	the	additional	
provisos	that	the	H-trees	of	order n-1	are	centered	in	the	four	
quadrants	of	the	square,	halved	in	size.	

94

More	recursive	graphics

95

• Sierpinski triangles

• Recursive	trees

