

Erkut Erdem, Aykut Erdem \& Aydın Kaya // Fall 2017

Last time... Collections, File I/O

Lists

$$
\begin{aligned}
& a=[3,2 * 2,10-1] \\
& b=\left[5,3, ' h l^{\prime}\right] \\
& c=\left[4, a^{\prime}, a\right]
\end{aligned}
$$

Sets

```
odd = set([1, 3, 5])
prime = set([2, 5])
empty = set([])
```

File I/O

```
myfile = open("output.dat", "w")
```

myfile = open("output.dat", "w")
myfile.write("a bunch of data")
myfile.write("a bunch of data")
myfile.write("a line of text\n")
myfile.write("a line of text\n")
myfile.close()

```
myfile.close()
```


Lecture Overview

- Notion of state in computation
- Recursion as a programming concept
- Mutual recursion
- Recursion tree
- Pitfalls of recursion

Disclaimer: Much of the material and slides for this lecture were borrowed from
-E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x,
—J. DeNero in CS 61A (Berkeley),
-T. Cortina in 15110 Principles of Computing (CMU)
—R. Sedgewick, K. Wayne and R. Dondero (Princeton)

Recursion

- Recursion is a programming concept whereby a function invokes itself.
- Recursion is typically used to solve problems that are decomposable into subproblems that are just like the original problem, but a step closer to being solved.

Computation

- All computation consists of chugging along from state to state to state ...
- There is a set of rules that tell us, given the current state, which state to go to next.

Arithmetic as Rewrite Rules

- $2+3+4$
- $5+4$
- 9
- Expression evaluation.
- We stop when we reach a number.

Functions as New Rules

def square(n):

```
return n * n
```

When we see: square (something)

Rewrite it as: something * something

Functions as Rewrite Rules

def square(n):

return n * n

- square (3)
- 3 * 3
- 9

Piecewise Functions

$f(n)= \begin{cases}1 & \text { if } n=1 \\ n-1 & \text { if } n>1\end{cases}$
f(4)
4-1
3

In Python

$\operatorname{def} f(n)$:

$$
\begin{array}{r}
\text { if } \mathrm{n}==1: \\
\text { return } 1
\end{array}
$$

else:
return n - 1

This is just math, right?

- Difference between mathematical functions and computation functions. Computation functions must be effective.
- For example, we can define the square-root function as
$v x=$ the y such that $y \geq 0$ and $y^{2}=x$
- This defines a valid mathematical function, but it doesn't tell us how to compute the square root of a given number.

Fancier Functions

def $f(n)$:
return $n+(n-1)$

Find $f(4)$

Fancier Functions

def $f(n)$:
return $n+(n-1)$
def $g(n)$: return $n+f(n-1)$

Find $g(4)$

Fancier Functions

def $f(n)$:
return $n+(n-1)$
def $g(n)$:
return $n+f(n-1)$
def $h(n)$:
return $n+h(n-1)$

Find h (4)

Recursion

def $h(n)$:
return $n+h(n-1)$

- h is a recursive function, because it is defined in terms of itself.

Definition

Recursion

- See: "Recursion".

Recursion

def $h(n)$:
return $n+h(n-1)$
h(4)
$4+h(3)$
$4+3+h(2)$
$4+3+2+h(1)$
$4+3+2+1+h(0)$
$4+3+2+1+0+h(-1)$
$4+3+2+1+0+-1+h(-2)$

Evaluating h leads to an infinite loop!

What you are thinking

"Ok, recursion is bad. What's the big deal?"

Recursion

def $f(n)$:

$$
\begin{aligned}
& \text { if } \mathrm{n}==1: \\
& \text { return } 1 \\
& \text { else: }
\end{aligned}
$$

$$
\text { return } f(n-1)
$$

Find $\mathrm{f}(1)$
Find $f(2)$
Find $f(3)$
Find $\mathrm{f}(100)$

Recursion

def $f(n)$:
if $n=1$:
return 1
else:
return $f(n-1)$
f(3)
$f(3-1)$
$f(2)$
$f(2-1)$
f(1)
1

Terminology

def $f(n)$:

return 1
else:
return $f(n-1)$
"Useful" recursive functions have:

- at least one recursive case
- at least one base case so that the computation terminates

Recursion

def $f(n)$:
if $\mathrm{n}=1$:
return 1
else:
return $f(n+1)$

Find $f(5)$
We have a base case and a recursive case. What's wrong?
The recursive case should call the function on a simpler input, bringing us closer and closer to the base case.

Recursion

def $f(n)$:

$$
\text { if } n=0 \text { : }
$$

return 0
else:
return $1+f(n-1)$

Find $f(0)$
Find $f(1)$
Find $f(2)$
Find $f(100)$

Recursion

def $f(n)$:
if $n=0$:
return 0
else:
return $1+f(n-1)$
f(3)
$1+f(2)$
$1+1+f(1)$
$1+1+1+f(0)$
$1+1+1+0$
3

Iterative algorithms

- Looping constructs (e.g. while or for loops) lead naturally to iterative algorithms
- Can conceptualize as capturing computation in a set of "state variables" which update on each iteration through the loop

Iterative multiplication by successive additions

- Imagine we want to perform multiplication by successive additions:
- To multiply a by b, add a to itself b times
- State variables:
- i - iteration number; starts at b
- result - current value of computation; starts at 0
- Update rules
$-i \leftarrow i-1$; stop when 0
- result \leftarrow result + a

Multiplication by successive additions

def iterMul (a, b):
result $=0$
while $\mathrm{b}>0$:
result += a
b $-=1$
return result

Recursive version

- An alternative is to think of this computation as:

$$
\begin{aligned}
a * b & =a+\underbrace{a+\ldots+a}_{b \text { copies }} \\
& =a+a+\underbrace{\ldots+a}_{b-1 \text { copies }} \\
& =a+a *(b-1)
\end{aligned}
$$

Recursion

- This is an instance of a recursive algorithm
- Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations [Recursive step]
- Keep reducing until reach a simple case that can be solved directly
[Base case]
- $a * b=a ;$ if $b=1$
(Base case)
- $a * b=a+a *(b-1) ;$ otherwise
(Recursive case)

Recursive Multiplication

def recurMul (a,b):

$$
\text { if } b==1 \text { : }
$$

return a
else:
return $a+r e c u r M u l(a, b-1)$

Let's try it out

def recurMul (a,b):
if $b=1$:
return a
else:
return a +
recurMul (a,b-1)

Let's try it out

def recurMul (a,b):

```
if \(b=1:\) return a
else:
```

return a + recurMul (a,b-1)

recurMul $(2,3)$

Let's try it out

def recurMul (a,b):

$$
\begin{aligned}
& \text { if } b==1: \\
& \quad \text { return } a \\
& \text { else: }
\end{aligned}
$$

return a + recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

 def recurMul (a,b): if $b=1:$ return a else:return a + recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

 def recurMul (a,b): if $b=1$: return a else:return a + recurMul (a,b-1)
recurMul $(2,3)$

The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def recurMul (a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)
```


Inductive Reasoning

- How do we know that our recursive code will work?
- iterMul terminates because b is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1
- recurMul called with $\mathbf{b}=1$ has no recursive call and stops
- recurMul called with b > 1 makes a recursive call with a smaller version of b; must eventually reach call with $b=1$

Mathematical Induction

- To prove a statement indexed on integers is true for all values of n :
- Prove it is true when n is smallest value (e.g. $n=0$ or $n=1$)
- Then prove that if it is true for an arbitrary value of n, one can show that it must be true for $n+1$

Example

- $0+1+2+3+\ldots+n=(n(n+1)) / 2$
- Proof
- If $n=0$, then LHS is 0 and RHS is $0 * 1 / 2=0$, so true
- Assume true for some k, then need to show that
- $0+1+2+\ldots+k+(k+1)=((k+1)(k+2)) / 2$
- LHS is $k(k+1) / 2+(k+1)$ by assumption that property holds for problem of size k
- This becomes, by algebra, ((k+1)(k+2))/2
- Hence expression holds for all $n>=0$

What does this have to do with code?

- Same logic applies

```
def recurMul (a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)
```

- Base case, we can show that recurMul must return correct answer
- For recursive case, we can assume that recurMul correctly returns an answer for problems of size smaller than b, then by the addition step, it must also return a correct answer for problem of size \mathbf{b}
- Thus by induction, code correctly returns answer

Sum digits of a number

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
def sum_digits(n):
    """"Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
```

```
            all_but_last, last = split(n)
```

 all_but_last, last = split(n)
 return sum_digits(all_but_last) + last
 return sum_digits(all_but_last) + last
 Verify the correctness of this recursive definition.

```

\section*{Some Observations}
- Each recursive call to a function creates its own environment, with local scoping of variables
- Bindings for variable in each frame distinct, and not changed by recursive call
- Flow of control will pass back to earlier frame once function call returns value

\section*{The "classic" Recursive Problem}
- Factorial
\[
\begin{aligned}
& \mathrm{n}!=\mathrm{n}^{*}(\mathrm{n}-1) * \ldots * 1 \\
& = \begin{cases}1 & \text { if } \mathrm{n}=0 \\
\mathrm{n} *(\mathrm{n}-1)! & \text { otherwise }\end{cases}
\end{aligned}
\]

\section*{Recursion in Environment Diagrams}
```

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)
fact(3)

```

\section*{Recursion in Environment Diagrams}
```

 def fact(n):
 if \(n=0\) :
 return 1
 else:
 return \(n^{*}\) fact(n-1)
 fact(3)
    ```
(Demo)

Global frame
fact
f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]


\section*{Recursion in Environment Diagrams}
```

 def fact(n):
    ```
    def fact(n):
    if \(n==0:\)
    if \(n==0:\)
        return 1
        return 1
        else:
        else:
        return \(n\) * fact( \(\mathrm{n}-1\) )
        return \(n\) * fact( \(\mathrm{n}-1\) )
    fact(3)
```

- The same function fact is called multiple times
(Demo)

f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0

Return	1

value

Recursion in Environment Diagrams

```
def fact(n):
```

def fact(n):
if n == 0:
if n == 0:
return 1
return 1
else:
else:
return n * fact(n-1)
return n * fact(n-1)
fact(3)

```
- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
(Demo)
Global fram
fact
f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0
Return 1
value

\section*{Recursion in Environment Diagrams}

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- What \(\mathbf{n}\) evaluates to depends upon the current environment

\section*{Recursion in Environment Diagrams}

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- What \(\mathbf{n}\) evaluates to depends upon the current environment
- Each call to fact solves a simpler problem than the last: smaller \(\mathbf{n}\)

\section*{Iteration vs Recursion}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

\section*{Iteration vs Recursion}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

Using while:
```

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+1
return total

```

Math:
\[
n!=\prod_{k=1}^{n} k
\]

Names: n, total, k, fact_iter

\section*{Iteration vs Recursion}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

Using while:
```

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+1
return total

```

Math:
\[
n!=\prod_{k=1}^{n} k
\]

Using recursion:
```

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)

```
\(n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}\)
n, fact

\section*{Recursion on Non-numerics}
- How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards
- "Able was I ere I saw Elba" attributed to Napolean
- "Are we not drawn onward, we few, drawn onward to new era?"
- "Ey Edip Adana'da pide ye"

\section*{How to we solve this recursive?}
- First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
- Then
- a string of length 0 or 1 is a palindrome [Base case]
- If first character matches last character, then is a palindrome if middle section is a palindrome [Recursive case]

\section*{Example}
- "Able was I ere I saw Elba" \(\rightarrow\) "ablewasiereisawelba"
- isPalindrome("ablewasiereisawelba")
is same as
"a"=="a" and isPalindrome("blewasiereisawleb")

\section*{Palindrome or not?}
def toChars (s):
\[
s=s . l o w e r()
\]
ans \(=\) ''
for \(c\) in \(s:\)
if \(c\) in 'abcdefghijklmnopqrstuvwxyz':
ans \(=\) ans \(+c\)
return ans

\section*{Palindrome or not?}
def isPal(s):
if len(s) <= 1:
return True
else:
return \(s[0]==s[-1]\) and isPal(s[1:-1])
def isPalindrome(s): return isPal(toChars(s))

\section*{Divide and Conquer}
- This is an example of a "divide and conquer" algorithm
- Solve a hard problem by breaking it into a set of sub-problems such that:
- Sub-problems are easier to solve than the original
- Solutions of the sub-problems can be combined to solve the original

\section*{Global Variables}
- Suppose we wanted to count the number of times fac calls itself recursively
- Can do this using a global variable
- So far, all functions communicate with their environment through their parameters and return values
- But, (though a bit dangerous), can declare a variable to be global - means name is defined at the outermost scope of the program, rather than scope of function in which appears

\section*{Example}
```

def facMetered(n):
global numCalls
numCalls += 1
if n == 0:
return 1
else:
return n * facMetered(n-1)
def testFac(n):
for i in range(n+1):
global numCalls
numCalls = 0
print('fac of ' +str(i) +' = ' +str(facMetered(i)))
print('fac called ' + str(numCalls) + ' times')
testFac(4)

Global Variables

- Use with care!!
- Destroy locality of code
- Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!

Mutual Recursion

- Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.

Mutual Recursion Example

 def even(n): if $\mathrm{n}=0$: return True else:return odd (n - 1)
def odd(n):

$$
\begin{aligned}
& \text { if } \mathrm{n}=0: \\
& \quad \text { return False }
\end{aligned}
$$

else:
return even (n - 1)
even (4)

The Luhn Algorithm

- A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.

The Luhn Algorithm

- From Wikipedia: http://en.wikipedia.org/wiki/Luhn algorithm
- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., $7 * 2=14$), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+$ $4=5$)
- Second: Take the sum of all the digits

1	3	8	7	4	3
2	3	$1+6=7$	7	8	3

- The Luhn sum of a valid credit card number is a multiple of 10

The Luhn Algorithm

```
def luhn_sum(n):
    """Return the digit sum of n computed by the Luhn algorithm"""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return luhn_sum_double(all_but_last) + last
def luhn_sum_double(n):
        """Return the Luhn sum of n, doubling the last digit."""
    all_but_last, last = split(n)
    luhn_digit = sum_digits(2 * last)
    if n< 10:
        return luhn_digit
    else:
        return luhn_sum(all_but_last) + luhn_digit
```


Tree Recursion

- Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

Tree Recursion

- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
- Newborn pair of rabbits (one female, one male) are put in a pen
- Rabbits mate at age of one month
- Rabbits have a one month gestation period
- Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
- How many female rabbits are there at the end of one year?

Fibonacci

- After one month (call it 0) -1 female
- After second month - still 1 female (now pregnant)
- After third month - two females, one pregnant, one not
- In general, females(n) $=$ females($\mathrm{n}-1)+$ females($\mathrm{n}-2$)

Month	Females
0	1
1	1
2	2
3	3
4	5
5	8
6	13

- Every female alive at month $n-2$ will produce one female in month n;
- These can be added those alive in month $n-1$ to get total alive in month n

Fibonacci

- Base cases:
- Females(0) = 1
- Females(1) = 1
- Recursive case
- Females(n) $=$ Females(n-1) + Females(n-2)

Fibonacci

 def fib(n):"""assumes n an int $>=0$
returns Fibonacci of n"""
assert type (n) $==$ int and $\mathrm{n}>=0$
if $\mathrm{n}=0$:
return 1
elif $\mathrm{n}=\mathrm{=}$ 1:
return 1
else:
return fib(n-2) $+\mathrm{fib}(\mathrm{n}-1)$

Tiling Squares

Rewrite rule: Add square to long side.

Tiling Squares

What is the side length of each square?

Tiling Squares

Spiral

Fibonacci

$1 \div 1=1$
$2 \div 1=2$
$3 \div 2=1.5$
$5 \div 3=1.666 \ldots$
$8 \div 5=1.6$
$13 \div 8=1.625$
$21 \div 13=1.615 \ldots$
$34 \div 21=1.619 \ldots$

Limit

What is the limit of $\frac{\mathrm{fib}(n)}{\mathrm{fib}(n-1)}$
as n approaches infinity?
1.6180339887498948482...

What's that called?

The Golden Ratio

The proportions of a rectangle that, when a square is added to it results in a rectangle with the same proportions.

The Golden Ratio

Fibonacci

$\mathrm{fib}(n)= \begin{cases}1 & n=1,2\end{cases}$ $\mathrm{fib}(n-1)+\mathrm{fib}(n-2) \quad n>2$
$\operatorname{fib}(n)=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$

Recursion Tree

- The computational process of fib evolves into a tree structure

Recursion Tree

- The computational process of fib evolves into a tree structure
fib(5)

Recursion Tree

- The computational process of fib evolves into a tree structure

fib(3)

Recursion Tree

- The computational process of fib evolves into a tree structure

Recursion Tree

- The computational process of fib evolves into a tree structure

Recursion Tree

- The computational process of fib evolves into a tree structure

Recursion Tree

- The computational process of fib evolves into a tree structure

Recursion Tree

- The computational process of fib evolves into a tree structure

Pitfalls of Recursion

- With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
- Missing base case
- No guarentee of convergence
- Excessive space requirements
- Excessive recomputation

Missing base case

def $H(n)$: return $H(n-1)+1.0 / n$;

- This recursive function is supposed to compute Harmonic numbers, but is missing a base case.
- If you call this function, it will repeatedly call itself and never return.

No guarantee of convergence

 def $H(n):$```
if n == 1:
 return 1.0
return H(n) + 1.0/n
```

- This recursive function will go into an infinite recursive loop if it is invoked with an argument $n$ having any value other than 1.
- Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.


## Excessive space requirements

- Python needs to keep track of each recursive call to implement the function abstraction as expected.
- If a function calls itself recursively an excessive number of times before returning, the space required by Python for this task may be prohibitive.

```
def H(n):
 if n == 0:
 return 0.0
 return H(n-1) + 1.0/n
```

- This recursive function correctly computes the nth harmonic number.
- However, we cannot use it for large $n$ because the recursive depth is proportional to $n$, and this creates a StackOverflowError.


## Excessive recomputation

- A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
- For example, fib is called on the same argument multiple times



## Recursive Graphics

- Simple recursive drawing schemes can lead to pictures that are remarkably intricate - Fractals
- For example, an $H$-tree of order $n$ is defined as follows:
- The base case is null for $n=0$.
- The reduction step is to draw, within the unit square three lines in the shape of the letter H four H -trees of order $n-1$.
- One connected to each tip of the H with the additional provisos that the H -trees of order $n-1$ are centered in the four quadrants of the square, halved in size.



## More recursive graphics

- Sierpinski triangles

- Recursive trees


