BBN 101 Introduction to Programming

Lecture #06 – Recursion

Erkut Erdem, Aykut Erdem & Aydın Kaya // Fall 2017

Last time... Collections, File I/O

succeeder

succentor.

success

efugio pretexto.

tapujo.

curribanda,

ubterráneo.

licado, eté.

netrante

other, no llevarse bien

succeeding sociality, tet, futu secuente, sucediente, futu sökséntər o .tor). s

alumno que aprueba

to make a success of,

to win a success, cons successful [söcsésful], adj acertado, boyante, d

nado, favorecido, fr

[söcsiding]. adi

dar). s. sucesor

pesés], s. buen éxit na, logro, bienandanza, dro, triunfo; persona o Lists

а	=	[З,	2*2, 10	-1]
b	=	[5,	3, 'hi']
С	=	[4,	'a', a 🤅]

odd = set([1, 3, 5])

prime = set([2, 5])

empty = set([])

Tuples

$$t1 = (1, 'two', 3)$$

 $t2 = (t1, 3.25)$
 $t3 = (t2, t1)$

Sets

Dictionaries

c = {"Ankara":"TR","Paris":"FR"}				
pb = dict()				
<pre>pb["Rick"] =</pre>	"206-555-4455"			

File I/O

myfile = open("output.dat", "w") myfile.write("a bunch of data") myfile.write("a line of text\n") myfile.close()

Lecture Overview

- Notion of state in computation
- Recursion as a programming concept
- Mutual recursion
- Recursion tree
- Pitfalls of recursion

Disclaimer: Much of the material and slides for this lecture were borrowed from

- E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x,
- -J. DeNero in CS 61A (Berkeley),
- -T. Cortina in 15110 Principles of Computing (CMU)
- -R. Sedgewick, K. Wayne and R. Dondero (Princeton)

- **Recursion** is a programming concept whereby a function invokes itself.
- Recursion is typically used to solve problems that are decomposable into subproblems that are just like the original problem, but a step closer to being solved.

Drawing Hands, by M. C. Escher (lithograph, 1948)

Computation

• All **computation** consists of chugging along from **state** to state to state ...

• There is a set of **rules** that tell us, given the current state, which state to go to next.

Arithmetic as Rewrite Rules

- 2 + 3 + 4
- 5 + 4
- 9

- Expression evaluation.
- We stop when we reach a number.

Functions as New Rules

def square(n):
 return n * n

When we see: **square** (*something*)

Rewrite it as: *something* * *something*

Functions as Rewrite Rules

def square(n):

return n * n

- square(3)
- 3 * 3
- 9

Piecewise Functions

$$f(n) = \begin{cases} 1 & \text{if } n = 1 \\ n - 1 & \text{if } n > 1 \end{cases}$$

f(4)

3

4 - 1

In Python

def f(n):
 if n == 1:
 return 1
 else:
 return n - 1

This is just math, right?

- Difference between mathematical functions and computation functions. Computation functions must be *effective*.
- For example, we can define the square-root function as

 \sqrt{x} = the y such that $y \ge 0$ and $y^2 = x$

 This defines a valid mathematical function, but it doesn't tell us how to compute the square root of a given number.

Fancier Functions

def f(n): return n + (n - 1)

Find f(4)

Fancier Functions

def f(n): return n + (n - 1) def g(n): return n + f(n - 1)

Find **g(4)**

Fancier Functions

```
def f(n):
    return n + (n - 1)
def q(n):
    return n + f(n - 1)
def h(n):
    return n + h(n - 1)
```

Find **h (4)**

```
def h(n):
```

return n + h(n - 1)

 h is a *recursive* function, because it is defined in terms of itself.

Definition

Recursion

• See: "Recursion".

- def h(n): return n + h(n - 1)
- h(4) 4 + h(3) 4 + 3 + h(2) 4 + 3 + 2 + h(1) 4 + 3 + 2 + 1 + h(0) 4 + 3 + 2 + 1 + 0 + h(-1) 4 + 3 + 2 + 1 + 0 + -1 + h(-2)...

Evaluating **h** leads to an infinite loop!

What you are thinking

"Ok, recursion is bad. What's the big deal?"

```
def f(n):
     if n == 1:
       return 1
     else:
       return f(n - 1)
Find f(1)
Find f(2)
Find f(3)
Find f (100)
```

```
def f(n):
     if n == 1:
       return 1
     else:
       return f(n - 1)
f(3)
f(3 - 1)
f(2)
f(2 - 1)
f(1)
1
```

Terminology

"Useful" recursive functions have:

- at least one *recursive case*
- at least one *base case* so that the computation terminates

```
def f(n):
    if n == 1:
        return 1
    else:
        return f(n + 1)
```

Find f(5)

We have a base case and a recursive case. What's wrong?

The recursive case should call the function on a *simpler input,* bringing us closer and closer to the base case.

```
def f(n):
     if n == 0:
        return 0
     else:
        return 1 + f(n - 1)
Find f(0)
Find f(1)
Find f(2)
Find f(100)
```

```
def f(n):
    if n == 0:
       return 0
    else:
       return 1 + f(n - 1)
f(3)
1 + f(2)
1 + 1 + f(1)
1 + 1 + 1 + f(0)
1 + 1 + 1 + 0
3
```

Iterative algorithms

- Looping constructs (e.g. while or for loops) lead naturally to **iterative** algorithms
- Can conceptualize as capturing computation in a set of "state variables" which update on each iteration through the loop

Iterative multiplication by successive additions

- Imagine we want to perform multiplication by successive additions:
 - To multiply a by b, add a to itself b times
- State variables:
 - i iteration number; starts at b
 - result current value of computation; starts at 0
- Update rules
 - $-i \leftarrow i -1$; stop when 0
 - result \leftarrow result + a

Multiplication by successive additions

def iterMul(a, b):
 result = 0
 while b > 0:
 result += a
 b -= 1
 return result

Recursive version

• An alternative is to think of this computation as:

$$a * b = a + a + ... + a$$

 $b \text{ copies}$
 $= a + a + ... + a$
 $b-1 \text{ copies}$
 $= a + a * (b - 1)$

- This is an instance of a **recursive** algorithm
 - Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations
 [Recursive step]
 - Keep reducing until reach a simple case that can be solved directly
 [Base case]
- a*b=a; if b=1 (Base case)
- a * b = a + a * (b-1); otherwise (Recursive case)

Recursive Multiplication

def recurMul(a,b):
 if b == 1:
 return a
 else:
 return a + recurMul(a,b-1)

recurMul(2,3)

The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def recurMul(a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)
```
Inductive Reasoning

- How do we know that our recursive code will work?
- iterMul terminates because b is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1
- recurMul called with b = 1 has no recursive call and stops
- recurMul called with b > 1 makes a recursive call with a smaller version of b; must eventually reach call with b = 1

Mathematical Induction

- To prove a statement indexed on integers is true for all values of n:
 - Prove it is true when n is smallest value (e.g. n = 0 or n = 1)
 - Then prove that if it is true for an arbitrary value of n, one can show that it must be true for n+1

Example

- 0+1+2+3+...+n=(n(n+1))/2
- Proof
 - If n = 0, then LHS is 0 and RHS is 0*1/2 = 0, so true
 - Assume true for some k, then need to show that
 - 0 + 1 + 2 + ... + k + (k+1) = ((k+1)(k+2))/2
 - LHS is k(k+1)/2 + (k+1) by assumption that property holds for problem of size k
 - This becomes, by algebra, ((k+1)(k+2))/2
 - Hence expression holds for all $n \ge 0$

What does this have to do with code?

• Same logic applies

```
def recurMul(a, b):
    if b == 1:
        return a
    else:
        return a + recurMul(a, b-1)
```

- Base case, we can show that recurMul must return correct answer
- For recursive case, we can assume that recurMul correctly returns an answer for problems of size smaller than b, then by the addition step, it must also return a correct answer for problem of size b
- Thus by induction, code correctly returns answer

Sum digits of a number

def split(n):

```
"""Split positive n into all but its last digit and its last digit."""
return n // 10, n % 10
```

```
def sum_digits(n):
```

```
"""Return the sum of the digits of positive integer n."""
if n < 10:
    return n
else:</pre>
```

```
all_but_last, last = split(n)
return sum_digits(all_but_last) + last
```


Verify the correctness of this recursive definition.

Some Observations

- Each recursive call to a function creates its own environment, with local scoping of variables
- Bindings for variable in each frame distinct, and not changed by recursive call
- Flow of control will pass back to earlier frame once function call returns value

The "classic" Recursive Problem

• Factorial n! = n * (n-1) * ... * 1 $= \begin{bmatrix} 1 & \text{if } n = 0 \\ n * (n-1)! & \text{otherwise} \end{bmatrix}$

1	def	fac	t(n):				
→ 2		if	n == 0):			
3			retur	'n	1		
4		els	e :				
→ 5			retur	'n	n	*	fact(n-1)
6							
7	fact	:(3)					

f4: fact [parent=Global]

Return value

- track of the different arguments in each call
- What n evaluates to depends upon the current environment

f4: fact [parent=Global]

value

- Different frames keep track of the different arguments in each call
- What n evaluates to depends upon the current environment
- Each call to **fact** solves a simpler problem than the last: smaller **n**

Iteration vs Recursion

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

$$n! = \prod_{k=1}^{n} k \qquad \qquad n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Iteration vs Recursion

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Using while:

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total</pre>

Math:

 $n! = \prod_{k=1}^{n} k$

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$
$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Names:

n, total, k, fact_iter

Iteration vs Recursion

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total</pre>

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Math:
$$n! = \prod_{n=1}^{n}$$

Names:

$$n! = \prod_{k=1}^n k$$

 $k! = \prod_{k=1}^n k$

Using while:

$$n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$
$$n! = \begin{cases} 1 & \text{if } n = 0\\ n, \text{ fac} \end{cases} n \cdot (n-1)! & \text{otherwise} \end{cases}$$

Recursion on Non-numerics

- How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards
 - "Able was I ere I saw Elba" attributed to Napolean
 - "Are we not drawn onward, we few, drawn onward to new era?"
 - "Ey Edip Adana'da pide ye"

How to we solve this recursive?

- First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
- Then
 - a string of length 0 or 1 is a palindrome [Base case]
 - If first character matches last character, then is a palindrome if middle section is a palindrome

[Recursive case]

Example

- "Able was I ere I saw Elba" →
 "ablewasiereisawelba"
- isPalindrome("ablewasiereisawelba")
 is same as
 "a"=="a" and isPalindrome("blewasiereisawleb")

Palindrome or not?

```
def toChars(s):
    s = s.lower()
    ans = ''
    for c in s:
        if c in 'abcdefghijklmnopqrstuvwxyz':
            ans = ans + c
    return ans
```

Palindrome or not?

```
def isPal(s):
    if len(s) <= 1:
        return True
    else:
        return s[0] == s[-1] and isPal(s[1:-1])
def isPalindrome(s):
    return isPal(toChars(s))</pre>
```

Divide and Conquer

- This is an example of a "divide and conquer" algorithm
 - Solve a hard problem by breaking it into a set of sub-problems such that:
 - Sub-problems are easier to solve than the original
 - Solutions of the sub-problems can be combined to solve the original

Global Variables

- Suppose we wanted to count the number of times fac calls itself recursively
- Can do this using a global variable
- So far, all functions communicate with their environment through their parameters and return values
- But, (though a bit dangerous), can declare a variable to be global – means name is defined at the outermost scope of the program, rather than scope of function in which appears

Example

```
def facMetered(n):
    global numCalls
    numCalls += 1
    if n == 0:
       return 1
    else:
       return n * facMetered(n-1)
def testFac(n):
    for i in range(n+1):
        global numCalls
        numCalls = 0
        print('fac of '+str(i) + ' = ' + str(facMetered(i)))
        print('fac called ' + str(numCalls) + ' times')
testFac(4)
```

Global Variables

- Use with care!!
- Destroy locality of code
- Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!

Mutual Recursion

 Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.

Mutual Recursion Example

```
def even(n):
     if n == 0:
         return True
    else:
         return odd(n - 1)
def odd(n):
     if n == 0:
         return False
    else:
         return even(n - 1)
```


even(4)

The Luhn Algorithm

 A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.

The Luhn Algorithm

- From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm
- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)
- Second: Take the sum of all the digits

1	3	8	7	4	3	
2	3	1+6=7	7	8	3	= 30

• The Luhn sum of a valid credit card number is a multiple of 10

The Luhn Algorithm

```
def luhn sum(n):
    """Return the digit sum of n computed by the Luhn algorithm"""
    if n < 10:
       return n
    else:
       all but last, last = split(n)
       return luhn sum double(all but last) + last
def luhn sum double(n):
    """Return the Luhn sum of n, doubling the last digit."""
    all but last, last = split(n)
    luhn digit = sum digits(2 * last)
    if n < 10:
```

return luhn_digit

else:

```
return luhn_sum(all_but_last) + luhn_digit
```

Tree Recursion

 Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

Tree Recursion

Howing

- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
 - Newborn pair of rabbits (one female, one male) are put in a pen
 - Rabbits mate at age of one month
 - Rabbits have a one month gestation period
 - Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
 - How many female rabbits are there at the end of one year?

Fibonacci

- After one month (call it 0) 1 female
- After second month still 1 female (now pregnant)
- After third month two females, one pregnant, one not
- In general, females(n) = females(n-1) + females(n-2)
 - Every female alive at month n-2 will produce one female in month n;
 - These can be added those alive in month
 n-1 to get total alive in month n

Month	Females			
0	1			
1	1			
2	2			
3	3			
4	5			
5	8			
6	13			

Fibonacci

- Base cases:
 - Females(0) = 1
 - Females(1) = 1
- Recursive case

- Females(n) = Females(n-1) + Females(n-2)

Fibonacci

```
def fib(n):
 """assumes n an int >= 0
 returns Fibonacci of n"""
 assert type(n) == int and n \ge 0
 if n == 0:
    return 1
 elif n == 1:
    return 1
 else:
    return fib(n-2) + fib(n-1)
```

Tiling Squares

Rewrite rule: Add square to long side.

Tiling Squares

Tiling Squares

Spiral

Fibonacci

- $1 \div 1 = 1$
- $2 \div 1 = 2$
- $3 \div 2 = 1.5$
- $5 \div 3 = 1.666...$
- $8 \div 5 = 1.6$
- $13 \div 8 = 1.625$
- 21 ÷ 13= 1.615...

34 ÷ 21= 1.619...

Limit

as **n** approaches infinity?

1.6180339887498948482...

What's that called?

The Golden Ratio

The proportions of a rectangle that, when a square is added to it results in a rectangle with the same proportions.

The Golden Ratio

Fibonacci

fib(n) = $\begin{cases} 1 & n = 1, 2 \\ fib(n-1) + fib(n-2) & n > 2 \end{cases}$ fib(n) = $\frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}}$

Pitfalls of Recursion

- With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
- Missing base case
- No guarentee of convergence
- Excessive space requirements
- Excessive recomputation

Missing base case

```
def H(n):
return H(n-1) + 1.0/n;
```

- This recursive function is supposed to compute Harmonic numbers, but is missing a base case.
- If you call this function, it will repeatedly call itself and never return.

No guarantee of convergence

```
def H(n):
if n == 1:
    return 1.0
return H(n) + 1.0/n
```

- This recursive function will go into an infinite recursive loop if it is invoked with an argument n having any value other than 1.
- Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.

Excessive space requirements

- Python needs to keep track of each recursive call to implement the function abstraction as expected.
- If a function calls itself recursively an excessive number of times before returning, the space required by Python for this task may be prohibitive.

```
def H(n):
if n == 0:
    return 0.0
    return H(n-1) + 1.0/n
```

- This recursive function correctly computes the nth harmonic number.
- However, we cannot use it for large n because the recursive depth is proportional to n, and this creates a StackOverflowError.

Excessive recomputation

- A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
- For example, fib is called on the same argument multiple times

Recursive Graphics

- Simple recursive drawing schemes can lead to pictures that are remarkably intricate – Fractals
- For example, an *H*-tree of order *n* is defined as follows:
 - The base case is null for n = 0.
 - The reduction step is to draw, within the unit square three lines in the shape of the letter H four H-trees of order n-1.
 - One connected to each tip of the H with the additional provisos that the H-trees of order n-1 are centered in the four quadrants of the square, halved in size.

More recursive graphics

• Sierpinski triangles

Recursive trees

