
Lecture	#08	– Testing	and	Debugging

Erkut Erdem,	Aykut	Erdem	&	Aydın	Kaya	//	Fall	2017

BBM	101
Introduction	to	
Programming	I

The	Adventures	of	Sherlock	Holmes	(1939)

Last	time… Sorting,	List	
Comprehension,	Visualization

Data	visualization

Sorting
print("hamlet:", hamlet)

print("sorted(hamlet):",
sorted(hamlet))
print("hamlet:", hamlet)

print("hamlet.sort():",
hamlet.sort())
print("hamlet:", hamlet)

M = MonthAverages('Ithaca')
bar(range(12),M,facecolor='magenta')
xlim(-.2,12)
ylabel('Average Hours of Sunlight')
title(A.City,fontsize=16)
show()

2

[i*2 for i in range(3)]

List	comprehension

Lecture	Overview
• Debugging
• Exception	Handling
• Testing

3

Disclaimer:Much	of	the	material	and	slides	for	this	lecture	were	borrowed	from	
—R.	Anderson,	M.	Ernst	and	B.	Howe	in	University	of	Washington	CSE	140

Lecture	Overview
• Debugging
• Exception	Handling
• Testing

4https://www.reddit.com/r/ProgrammerHumor/comments/1r0cw7/the_5_stages_of_debugging/

The	Problem

What	you	want
your	program	to	do What	your	program	does

Not	the	same!

5

There	is	a	bug!

What	is	Debugging?
• Grace	Hopper	was	one	of	U.S.’s	first	programmers.
• She	found	a	moth	in	the	Mark	I	computer,	which	was	
causing	errors,	and	called	it	a	computer	“bug”

• Thus,	the	word	debugging	is	coined	J

6

Debugging	Tools
• Python	error	message
• assert
• print
• Python	interpreter
• Python	Tutor	(http://pythontutor.com)
• Python	debugger
• Best	tool:		

7

1. The	scientific	method
2. Divide	and	conquer

If	you	master	those,	you	will	find	debugging	
easy,	and	possibly	enjoyable	;-)	

8

Two	Key	Ideas

The	Scientific	Method

1. Create	a	hypothesis

2. Design	an	experiment	to	test	that	hypothesis
– Ensure	that	it	yields	insight

3. Understand	the	result	of	your	experiment
– If	you	don’t	understand,	then	possibly	suspend	
your	main	line	of	work	to	understand	that

9

The	Scientific	Method

Tips:

• Be	systematic
– Never	do	anything	if	you	don't	have	a	reason
– Don’t	just	flail
• Random	guessing	is	likely	to	dig	you	into	a	deeper	hole

• Don’t	make	assumptions	(verify	them)

10

Example	Experiments
1. An	alternate	implementation	of	a	function
– Run	all	your	test	cases	afterward

2. A	new,	simpler	test	case
– Examples:		smaller	input,	or	test	a	function	in	
isolation

– Can	help	you	understand	the	reason	for	a	failure

11

Your	Scientific	Notebook
Record	everything	you	do
• Specific	inputs	and	outputs	(both	expected	and	actual)
• Specific	versions	of	the	program

– If	you	get	stuck,	you	can	return	to	something	that	works
– You	can	write	multiple	implementations	of	a	function

• What	you	have	already	tried
• What	you	are	in	the	middle	of	doing	now

– This	may	look	like	a	stack!

• What	you	are	sure	of,	and	why

Your	notebook	also	helps	if	you	need	to	get	help	or	reproduce	
your	results.

12

Read	the	Error	Message

Traceback (most recent call last):
File "nx_error.py", line 41, in <module>
print(friends_of_friends(rj, myval))

File "nx_error.py", line 30, in friends_of_friends
f = friends(graph, user)

File "nx_error.py", line 25, in friends
return set(graph.neighbors(user))#

File "/Library/Frameworks/…/graph.py", line 978, in neighbors
return list(self.adj[n])

TypeError: unhashable type: 'list'

List	of	all	exceptions	(errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions
Two	other	resources,	with	more	details	about	a	few	of	the	errors:
http://inventwithpython.com/appendixd.html
http://www.cs.arizona.edu/people/mccann/errors-python

Call	stack	or	traceback

First	function	that	was	
called	(<module>
means	the	interpreter)

Second	function	
that	was	called

Last	function	that	
was	called	(this	one	
suffered	an	error)

The	error	message:
daunting	but	useful.
You	need	to	understand:
• the	literal	meaning	of	

the	error
• the	underlying	

problems	certain	
errors	tend	to	suggest13

Common	Error	Types

• AssertionError
– Raised	when	an	assert	statement	fails.

• IndexError
– Raised	when	a	sequence	subscript	is	out	of	range.

• KeyError
– Raised	when	a	mapping	(dictionary)	key	is	not	found	in	the	
set	of	existing	keys.

• KeyboardInterrupt
– Raised	when	the	user	hits	the	interrupt	key	(normally	
Control-C	or	Delete).	

14

Common	Error	Types

• NameError
– Raised	when	a	local	or	global	name	is	not	found.	

• SyntaxError
– Raised	when	the	parser	encounters	a	syntax	error.	

• IndentationError
– Base	class	for	syntax	errors	related	to	incorrect	
indentation.

• TypeError
– Raised	when	an	operation	or	function	is	applied	to	an	
object	of	inappropriate	type.

15

Divide	and	Conquer

• Where	is	the	defect	(or	“bug”)?
• Your	goal	is	to	find	the	one	place	that	it	is
• Finding	a	defect	is	often	harder	than	fixing	it

• Initially,	the	defect	might	be	anywhere	in	your	program
– It	is	impractical	to	find	it	if	you	have	to	look	everywhere

• Idea:		bit	by	bit	reduce	the	scope	of	your	search
• Eventually,	the	defect	is	localized	to	a	few	lines	or	one	
line
– Then	you	can	understand	and	fix	it

16

Divide	and	Conquer

• 4	ways	to	divide	and	conquer:
– In	the	program	code
– In	test	cases
– During	the	program	execution
– During	the	development	history

17

• Localize	the	defect	to	part	of	the	program
– e.g.,	one	function,	or	one	part	of	a	function

• Code	that	isn’t	executed	cannot	contain	the	defect

18

Divide	and	Conquer	in	the	Program	Code

Three	approaches:
1. Test	one	function	at	a	time

19

Divide	and	Conquer	in	the	Program	Code

Three	approaches:
2. Add	assertions	or	print	statements
– The	defect	is	executed	before	the	failing	assertion	
(and	maybe	after	a	succeeding	assertion)

20

Divide	and	Conquer	in	the	Program	Code

Three	approaches:
3. Split	complex	expressions	into	simpler	ones

Example:	Failure	in
result = set({graph.neighbors(user)})

Change	it	to
nbors = graph.neighbors(user)

nbors_set = {nbors}

result = set(nbors_set)

The	error	occurs	on	the	“nbors_set =	{nbors}"	line
21

Divide	and	Conquer	in	the	Program	Code

Divide	and	Conquer	in	Test	Cases

• Your	program	fails	when	run	on	some	large	input
– It’s	hard	to	comprehend	the	error	message
– The	log	of	print	statement	output	is	overwhelming

• Try	a	smaller	input
– Choose	an	input	with	some	but	not	all	characteristics	of	
the	large	input

– Example:		duplicates,	zeroes	in	data,	…

22

Divide	and	Conquer	in	Execution	Time
via	Print	(or	“logging”)	Statements

• A	sequence	of		print statements	is	a	record	of	the	
execution	of	your	program

• The		print statements	let	you	see	and	search	
multiple	moments	in	time

• Print	statements	are	a	useful	technique,	in	moderation
• Be	disciplined
– Too	much	output	is	overwhelming	rather	than	informative
– Remember	the	scientific	method:		have	a	reason	(a	
hypothesis	to	be	tested)	for	each	print	statement

– Don’t	only use	print	statements

23

Divide	and	Conquer	in	Development	
History
• The	code	used	to	work	(for	some	test	case)
• The	code	now	fails
• The	defect	is	related	to	some	line	you	changed

• This	is	useful	only	if	you	kept	a	version	of	the	
code	that	worked	(use	good	names!)

• This	is	most	useful	if	you	have	made	few	changes
• Moral:		test	often!
– Fewer	lines	to	compare
– You	remember	what	you	were	thinking/doing	recently

24

A	Metaphor	About	Debugging

If	your	code	doesn’t	work	as	
expected,	then	by	definition	you	
don’t	understand	what	is	going	on.

• You’re	lost	in	the	woods.
• You’re	behind	enemy	lines.		
• All	bets	are	off.		
• Don’t	trust	anyone	or	anything.

Don’t	press	on	into	unexplored	
territory	-- go	back	the	way	you	
came! (and	leave	breadcrumbs!)

You’re	trying	to	“advance	the	front	lines,”	not	“trailblaze”
25

• The	game	is	to	go	from	“working	to	working”
• When	something	doesn’t	work,	STOP!
– It’s	wild	out	there!

• FIRST:	Go	back	to	the	last	situation	that	worked	properly.
– Rollback	your	recent	changes	and	verify	that	everything	still	works	as	

expected.	
– Don’t	make	assumptions	– by	definition,	you	don’t	understand	the	

code	when	something	goes	wrong,	so	you	can’t	trust	your	
assumptions.

– You	may	find	that	even	what	previously	worked	now	doesn’t
– Perhaps	you	forgot	to	consider	some	“innocent”	or	unintentional	

change,	and	now	even	tested	code	is	broken

26

Time-Saving	Trick:	Make	Sure	You	are	
Debugging	the	Right	Problem

A	Bad	Timeline

• A	works,	so	celebrate	a	little
• Now	try	B
• B	doesn’t	work
• Change	B	and	try	again
• Change	B	and	try	again	
• Change	B	and	try	again
…

27

https://xkcd.com/1739/

A	Bad	Timeline

• A	works,	so	celebrate	a	little
• Now	try	B
• B	doesn’t	work
• Change	B	and	try	again
• Change	B	and	try	again	
• Change	B	and	try	again
…

28

from	giphy.com

A	Better	Timeline
• A	works,	so	celebrate	a	little
• Now	try	B
• B	doesn’t	work
• Rollback	to	A
• Does	A	still	work?		

– Yes:	Find	A’	that	is	somewhere	between	A	and	B
– No:	You	have	unintentionally	changed	something	else,	and	there’s	no	

point	futzing	with	B	at	all!

These	“innocent”	and	unnoticed	changes	happen	more	than	you	would	think!		
• You	add	a	comment,	and	the	indentation	changes.		
• You	add	a	print	statement,	and	a	function	is	evaluated	twice.
• You	move	a	file,	and	the	wrong	one	is	being	read
• You	are	on	a	different	computer,	and	the	library	is	a	different	version

29

Once	You	are	on	Solid	Ground	You	can	
Set	Out	Again
• Once	you	have	something	that	works	and	
something	that	doesn’t	work,	it	is	only	a	matter	
of	time

• You	just	need	to	incrementally	change	the	
working	code	into	the	non-working	code,	and	the	
problem	will	reveal	itself.

• Variation:	Perhaps	your	code	works	with	one	
input,	but	fails	with	another.		Incrementally	
change	the	good	input	into	the	bad	input	to	
expose	the	problem.

30

Simple	Debugging	Tools
print
– shows	what	is	happening	whether	there	is	a	problem	or	
not

– does	not	stop	execution
assert
– Raises	an	exception	if	some	condition	is	not	met
– Does	nothing	if	everything	works
– Example:			assert len(rj.edges()) == 16

– Use	this	liberally!		Not	just	for	debugging!	

31

32

33

Lecture	Overview
• Debugging
• Exception	Handling
• Testing

34

What	is	an	Exception?
• An	exception	is	an	abnormal	condition	(and	thus	
rare)	that	arises	in	a	code	sequence	at	runtime.	

• For	instance:
– Dividing	a	number	by	zero
– Accessing	an	element	that	is	out	of	bounds	of	an	array
– Attempting	to	open	a	file	which	does	not	exist

35

What	is	an	Exception?
• When	an	exceptional	condition	arises,	an	object	
representing	that	exception	is	created	and	thrown	in	
the	code	that	caused	the	error

• An	exception	can	be	caught	to	handle	it	or	pass	it	on

• Exceptions	can	be	generated	by	the	run-time	system,	
or	they	can	be	manually	generated	by	your	code

36

What	is	an	Exception?
test = [1,2,3]
test[3]

37

IndexError: list index out of range

What	is	an	Exception?
successFailureRatio = numSuccesses/numFailures

print('The success/failure ratio is',
successFailureRatio)

print('Now here')

38

ZeroDivisionError: integer division or
modulo by zero

What	is	an	Exception?
val = int(input('Enter an integer: '))

print('The square of the number', val**2)

> Enter an integer: asd

39

ValueError: invalid literal for int() with
base 10: 'asd'

Handling	Exceptions
• Exception mechanism gives the programmer a	chance
to do	something against an	abnormal condition.

• Exception handling is	performing an	action in	response
to an	exception.

• This action may be:
– Exiting the program
– Retrying the action with or without alternative data
– Displaying an	error message and warning user to do	
something

–

40

Handling	Exceptions
try:

successFailureRatio = numSuccesses/numFailures

print('The S/F ratio is', successFailureRatio)

except ZeroDivisionError:

print('No failures, so the S/F is undefined.')

print('Now here')

41

• Upon	entering	the	try block,	the	interpreter	attempts	to	evaluate	
the	expression	numSuccesses/numFailures.	

• If	expression	evaluation	is	successful,	the	assignment	is	done	and	
the	result	is	printed.	

• If,	however,	a	ZeroDivisionError exception	is	raised,	the	print	
statement	in	the	except block	is	executed.

while True:
val = input('Enter an integer: ')
try:

val = int(val)
print('The square of the number', val**2)
break #to exit the while loop

except ValueError:
print(val, 'is not an integer')

42

Handling	Exceptions

Checks	for	whether	ValueError exception	is	raised	or	not

Keywords	of	Exception	Handling
• There are five keywords in	Python to deal with
exceptions:	try,	except,	else,	raise and finally.

• try:	Creates a	block to monitor if any exception
occurs.

• except:	Follows the try block and catches any
exception which is	thrown within it.

43

Are	There	Many	Exceptions	in	Python?

• Yes,	some	of	them	are…
– Exception
– ArithmeticError
– OverflowError
– ZeroDivisonError
– EOFError
– NameError
– IOError
– SyntaxError

44

List	of	all	exceptions	(errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions

Multiple	except	Statements

45

• It is	possible that more than one exception can	be	
thrown in	a	code block.
– We	can	use	multiple	except clauses

• When	an	exception	is	thrown,	each	except
statement	is	inspected	in	order,	and	the	first	one	
whose	type	matches that	of	the	exception	is	executed.	
– Type matching means that the exception thrown must be	an	
object of	the same class or a	sub-class of	the declared class
in	the except statement

• After	one	except statement	executes,	the	others	are	
bypassed.

Multiple	except	Statements

46

try:

You	do	your	operations	here;	
except Exception-1:

Execute	this	block.	
except Exception-2:

Execute	this	block.	
except (Exception-3[, Exception-4[,...ExceptionN]]]):

If	there	is	any	exception	from	the	given	exception	list,	
then	execute	this	block.

except (ValueError, TypeError):
…

The	except	block	will	be	entered	if	any	of	the	listed	
exceptions is	raised	within	the	try	block

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

47

You	can't	divide	by	zero!

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except Exception:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

48

Exception	occured and	handled!

Multiple	except	Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

49

SyntaxError: default 'except:' must be last

except-else	Statements

50

try:
You do your operations here

except:
Execute this block.

else:
If there is no exception, execute this block.

try:
f = open(arg, 'r')

except IOError:
print('cannot open', arg)

else:
print(arg, 'has', len(f.readlines()), 'lines')

finally Statement

51

• finally creates a	block of	code that will be	executed after
a	try/except block has	completed and before the code
following the try/except block

• finally block is	executed whether or not	exception is	thrown

• finally block is	executed whether or not	exception is	caught

• It is	used to gurantee that a	code block will be	executed in	any
condition.	

finally Statement

52

You	can	use	it	to	clean	up	files,	database	connections,	etc.

try:
You do your operations here

except:
Execute this block.

finally:
This block will definitely be executed.

try:
file = open('out.txt', 'w')
do something…

finally:
file.close()
os.path.remove('out.txt')

Nested	try Blocks
• When an	exception occurs inside	a	try block;

– If the try block does not	have a	matching except,	then the outer
try statement’s except clauses are inspected for a	match

– If a	matching except is	found,	that except block is	executed
– If no matching except exists,	execution flow continues to find a	

matching except by inspecting the outer try statements
– If a	matching except cannot be	found at	all,	the exception will be	

caught by Python’s exception handler.	

• Execution flow never returns to the line that exception
was thrown.	This means,	an	exception is	caught and
except block is	executed,	the flow will continue with the
lines following this except block

53

Let’s clarify it	on	various scenarios

54

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Information: Exception1	and	Exception2	are	
subclasses	of	Exception3

Question:	Which	statements	are	executed	if
1- statement1	throws	Exception1
2- statement2	throws	Exception1
3- statement2	throws	Exception3
4- statement2	throws	Exception1	and	
statement3	throws Exception2

Scenario:	statement1	throws Exception1

55

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	
block	are	inspected	for	a	
matching except statement.	
Exception3	is	super	class	of	
Exception1,	so	it	matches.

Step3:	statement8	is	executed,	exception	is	handled	and	execution	
flow	will	continue	bypassing	the	following except clauses

Step4:	statement9	is	executed

Scenario:	statement2	throws Exception1

56

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	block	are	
inspected	for	a	matching except statement.	First	
clause	catches	the	exception

Step3:	statement3	is	executed,	exception	is	
handled

Step4:	execution	flow	will	continue	bypassing	the	
following except clauses.	statement5	is	executed.

Step5:	Assuming	no	exception	is	thrown	by	
statement5,	program	continues	with	statement7	
and	statement9.

Scenario:	statement2	throws Exception3

57

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception3
Step1:	Exception	is	thrown

Step2:	except clauses of	the	try	block	are	
inspected	for	a	matching except statement.	
None	of	these except clauses match	Exception3

Step3:	except clauses of	the	outer	try	statement	
are	inspected	for	a	matching except .	Exception3	is	
catched	and	statement8	is	executed

Step4:	statement9	is	executed

Scenario:	statement2	throws Exception1	
and statement3	throws Exception2

58

try:	
statement1
try:

statement2
except Exception1:	

statement3
except Exception2:	

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1:	Exception	is	thrown

Step2:	Exception	is	catched	and	statement3	is	
executed.

Step3:	statement3	throws	a	new	exception

Step5:	statement9	is	executed

Exception2

Step4:	Except clauses of	the	outer	
try	statement	are	inspected	for	a	
matching except.	Exception2	is	
catched	and	statement8	is	
executed

raise Statement
• You	can	raise	exceptions	by	using	the	raise
statement.

• The	syntax	is	as	follows:	
raise exceptionName(arguments)

59

raise Statement
def getRatios(vect1, vect2):

ratios = []
for index in range(len(vect1)):

try:
ratios.append(vect1[index]/vect2[index])

except ZeroDivisionError:
ratios.append(float('nan')) #nan = Not a Number

except:
raise ValueError(’getRatios called with bad arguments’)

return ratios

try:
print(getRatios([1.0, 2.0, 7.0, 6.0], [1.0,2.0,0.0,3.0]))
print(getRatios([], []))
print(getRatios([1.0, 2.0], [3.0]))

except ValueError as msg:
print(msg)

60

[1.0, 1.0, nan, 2.0]
[]
getRatios called with bad arguments

raise Statement
• Avoid	raising	a	generic	Exception! To	catch	it,	you'll	have	

to	catch	all	other	more	specific	exceptions	that	subclass	it..	

61

def demo_bad_catch():
try:

raise ValueError('a hidden bug, do not catch this')
raise Exception('This is the exception you expect to handle')

except Exception as error:
print('caught this error: ' + repr(error))

>>> demo_bad_catch()
caught this error: ValueError('a hidden bug, do not catch this',)

raise Statement
• and	more	specific	catches	won't	catch	the	general	exception:..	

62

def demo_no_catch():
try:

raise Exception('general exceptions not caught by specific handling')
except ValueError as e:

print('we will not catch e')

>>> demo_no_catch()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in demo_no_catch

Exception: general exceptions not caught by specific handling

Custom	Exceptions

63

• Users	can	define	their	own	exception	by	creating	a	
new	class	in	Python.

• This	exception	class	has	to	be	derived,	either	directly	
or	indirectly,	from	Exception	class.	

• Most	of	the	built-in	exceptions	are	also	derived	form	
this	class.

Custom	Exceptions

class ValueTooSmallError(Exception):
"""Raised when the input value is too small"""
pass

class ValueTooLargeError(Exception):
"""Raised when the input value is too large"""
pass

64

Custom	Exceptions

number = 10 # you need to guess this number

while True:
try:

i_num = int(input("Enter a number: "))
if i_num < number:

raise ValueTooSmallError
elif i_num > number:

raise ValueTooLargeError
break

except ValueTooSmallError:
print("This value is too small, try again!")

except ValueTooLargeError:
print("This value is too large, try again!")

print("Congratulations! You guessed it correctly.")

65

Lecture	Overview
• Debugging
• Exception	Handling
• Testing

66

Testing
• Programming	to	analyze	data	is	powerful
• It	is	useless	if	the	results	are	not	correct
• Correctness	is	far	more	important	than	speed

67

Famous	Examples
• Ariane 5	rocket
– On	June	4,	1996,	the	maiden	flight	
of	the	European	Ariane	5	launcher	
crashed	about	40	seconds	after	takeoff.

– Media	reports	indicated	that	the	amount	lost	was	half	
a	billion	dollars

– The	explosion	was	the	result	of	a	software	error

• Therac-25	radiation	therapy	machine
– In	1985	a	Canadian-built	radiation-treatment	device	
began	blasting	holes	through	patients'	bodies.

68

Testing	does	not	Prove Correctness
• Edsger Dijkstra:	“Program	testing	can	be	used	
to	show	the	presence	of	bugs,	but	never	to	
show	their	absence!”

69

Testing	=	Double-Checking	Results
• How	do	you	know	your	program	is	right?
– Compare	its	output	to	a	correct	output

• How	do	you	know	a	correct	output?
– Real	data	is	big
– You	wrote	a	computer	program	because	it	is	not	
convenient	to	compute	it	by	hand

• Use	small	inputs	so	you	can	compute	by	hand

• Example:		standard	deviation
– What	are	good	tests	for	std_dev?

70

Testing	≠	Debugging
• Testing:		Determining	whether your	program	
is	correct
– Doesn’t	say	where or	how your	program	is	
incorrect

• Debugging:		Locating	the	specific	defect	in	
your	program,	and	fixing	it
2	key	ideas:
– divide	and	conquer
– the	scientific	method

71

What	is	a	Test?

• A	test	consists	of:
– an	input:	sometimes	called	“test	data”
– an	oracle:	a	predicate	(boolean expression)	of	the	
output

72

What	is	a	Test?

• Example	test	for	sum:
– input:		[1,	2,	3]
– oracle:		result	is	6
– write	the	test	as:			sum([1, 2, 3]) == 6

• Example	test	for	sqrt:
– input:		3.14
– oracle:		result	is	within	0.00001	of	1.772
– ways	to	write	the	test:
• -0.00001 < sqrt(3.14) – 1.772 < 0.00001
• math.abs(sqrt(3.14) – 1.772) < 0.00001

73

Test	Results
• The	test	passes if	the	boolean	expression	evaluates	
to	True

• The	test	fails if	the	boolean	expression	evaluates	to	
False

• Use	the	assert statement:
– assert sum([1, 2, 3]) == 6
– assert True does	nothing
– assert False crashes	the	program	and	prints	a	
message

74

Where	to	Write	Test	Cases
• At	the	top	level:	is	run	every	time	you	load	your	program

def hypotenuse(a, b):
…

assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

• In	a	test	function:		is	run	when	you	invoke	the	function	
def hypotenuse(a, b):
…

def test_hypotenuse():
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

75

Assertions	are	not	Just	for	Test	Cases
• Use	assertions	throughout	your	code

• Documents	what	you	think	is	true	about	your	
algorithm

• Lets	you	know	immediately	when	something	goes	
wrong
– The	longer	between	a	code	mistake	and	the	programmer	
noticing,	the	harder	it	is	to	debug	

76

Assertions	Make	Debugging	Easier
• Common,	but	unfortunate,	course	of	events:

– Code	contains	a	mistake	(incorrect	assumption	or	algorithm)
– Intermediate	value	(e.g.,	result	of	a	function	call)	is	incorrect
– That	value	is	used	in	other	computations,	or	copied	into	other	
variables

– Eventually,	the	user	notices	that	the	overall	program	produces	
a	wrong	result

– Where	is	the	mistake	in	the	program?		It	could	be	anywhere.

• Suppose	you	had	10	assertions	evenly	distributed	in	your	
code
– When	one	fails,	you	can	localize	the	mistake	to	1/10	of	your	
code	(the	part	between	the	last	assertion	that	passes	and	the	
first	one	that	fails)

77

Where	to	Write	Assertions
• Function	entry:		Are	arguments	legal?
– Place	blame	on	the	caller	before	the	function	fails

• Function	exit:		Is	result	correct?

• Places	with	tricky	or	interesting	code

• Assertions	are	ordinary	statements;	e.g.,	can	appear	
within	a	loop:

for n in myNumbers:
assert type(n) == int or type(n) == float

78

Where	not to	Write	Assertions
• Don’t	clutter	the	code
– Same	rule	as	for	comments

• Don’t	write	assertions	that	are	certain	to	succeed
– The	existence	of	an	assertion	tells	a	programmer	that	it	
might	possibly	fail

• Don’t	write	an	assertion	if	the	following	code	would	fail	
informatively

assert type(name) == str
print("Hello, " + name)

• Write	assertions	where	they	may	be	useful	for	
debugging

79

What	to	Write	Assertions	About
• Results	of	computations

• Correctly-formed	data	structures

assert 0 <= index < len(mylist)
assert len(list1) == len(list2)

80

When	to	Write	Tests
• Two	possibilities:
–Write	code	first,	then	write	tests
–Write	tests	first,	then	write	code

81

When	to	Write	Tests
• If	you	write	the	code	first,	you	remember	the	
implementation	while	writing	the	tests
– You	are	likely	to	make	the	same	mistakes	in	the	
implementation

82

When	to	Write	Tests
• If	you	write	the	tests	first,	you	will	think	more	
about	the	functionality	than	about	a	particular	
implementation
– You	might	notice	some	aspect	of	behavior	that	
you	would	have	made	a	mistake	about

– This	is	the	better	choice

83

Write	the	Whole	Test
• A	common	mistake:

1. Write	the	function
2. Make	up	test	inputs
3. Run	the	function
4. Use	the	result	as	the	oracle

• You	didn’t	write	a	test,	but	only	half	of	a	test
– Created	the	tests	inputs,	but	not	the	oracle

• The	test	does	not	determine	whether	the	function	is	
correct
– Only	determines	that	it	continues	to	be	as	correct	(or	
incorrect)	as	it	was	before

84

Testing	Approaches
• Black	box	testing	- Choose	test	data	without
looking	at	implementation	

• Glass	box	(white	box,	clear	box)	testing -
Choose	test	data	with knowledge	of	
implementation	

85

Inside	Knowledge	might	be	Nice
• Assume	the	code	below:

c = a + b
if c > 100

print("Tested”)
print("Passed”)

• Creating	a	test	case	with	a=40	and	b=70	is	not	enough
– Although	every	line	of	the	code	will	be	executed

• Another	test	case	with	a=40	and	b=30	would	complete	
the	test

86

Tests	might	not	Reveal	an	Error	Sometimes

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty number list."""
return sum(numbers)//len(numbers)

Tests
assert mean([1, 2, 3, 4, 5]) == 3
assert mean([1, 2, 3]) == 2

This	implementation	is	elegant,	but	wrong!

mean([1,2,3,4]) à would return 2.5!!!

87

Last	but	not	Least,	Don’t	Write	Meaningless	
Tests
def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty number list."""
return sum(numbers)//len(numbers)

Unnecessary	tests.		Don’t	write	these:

mean([1, 2, "hello"])
mean("hello")
mean([])

88

