O'REILLY®

The Resurgence
of C Programming

Do You Still Need to Write Code
to Build Cool Machines?

Mike Barlow

OREILLY"®

Hardware

THE NEW HARDWARE MOVEMENT

‘Hardware startups 4
are looking like
the software
startups
of the
previous
digital age.”

—Joilto

Connected, intelligent hardware is the next great technology

opportunity—one that promises to revolutionize every industry.

It's getting easier to design, engineer, prototype, manufacture, and market physical
products, putting innovation within reach of startups and giant enterprises alike.

The next great opportunities for innovation aren't limited to pixels on a screen. To tackle
them, you'll need to understand the full stack of the New Hardware Movement: how to
design, prototype, manufacture, and market great connected devices.

Every one of those steps has become accessible to technical generalists in the last five
years. Startups and giant enterprises alike are developing their next-generation products
in new, agile ways.

O'Reilly has the resources you need to kick off your vision.

To get started, visit oreilly.com/hardware

https://www.oreilly.com/topics/hardware-innovation

The Resurgence of C

Programming
Do You Still Need to Write Code to
Build Cool Machines?

Mike Barlow

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

The Resurgence of C Programming
by Mike Barlow

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Brian Jepson and Susan Conant Interior Designer: David Futato
Production Editor: Nicholas Adams Cover Designer: Randy Comer
Copyeditor: Rachel Monaghan

December 2016: First Edition

Revision History for the First Edition
2016-12-09: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. The Resurgence of
C Programming, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-93280-3
[LSI]

http://oreilly.com/safari

Table of Contents

The Resurgence of CProgramming............ccoovvvvienneennnnnn. 1
Learning About Software by Tinkering with Hardware
Working in Tight Spaces

Unforeseen Consequences

Extracting Maximum Performance

Still Alive and Well

The Right Tool for the Job

“It’s Like Learning to Drive a Stick Shift”

Learn by Doing

Everyday People Making New Tech

Blurring the Boundaries

—_
— O O 00N QN Ul W

[—

The Resurgence of C Programming

Way back in the early 1970s, learning C was a rite of passage for
many students. By today’s standards, it's not a very high-level lan-
guage. But back in those early days, long before the arrival of Java
and Python, C was considered high level, especially when compared
to assembly languages.

In the preface to their book The C Programming Language, Brian W.
Kernighan and Dennis M. Ritchie note that C “is not specialized to
any particular area of application. But its absence of restrictions and
its generality make it more convenient and effective for many tasks
than supposedly more powerful languages”

To some degree, C was written for the purpose of elevating UNIX
from a machine-level operating system to something resembling a
universal platform for a wide range of software applications. Since
its inception in 1972, C has been the common language of UNIX,
which essentially means that it’s everywhere.

Example 1-1. C program to blink an LED on an 8-bit microcontroller
with a 2,000-microsecond delay (adapted from the book AVR
Programming)

/* Blinker Demo */
/) - Preamble -------- //

#include <avr/io.h>/* Defines pins, ports, etc */
#include <util/delay.h> /* Functions to waste time */

int main(void) {
V/2REE TR Inits --------- //

DDRB = 0b0OOOOOO1; /* Data Direction Register B:
writing a one to the bit

http://shop.oreilly.com/product/0636920028161.do
http://shop.oreilly.com/product/0636920028161.do

enables output. */

/) - Event loop ------ //
while (1) {
PORTB = 0b0OOOOOEO1; /* Turn on first LED
bit/pin in PORTB */
_delay_ms(2000); /* wait */
PORTB = 0bOOOOOOEO; /* Turn off all B pins,
including LED */
_delay_ms(2000); /* wait */
} /* End event loop */
return (0); /* This line is never reached */

}

C and C++ are at the heart of Arduino, the open source project for
building do-it-yourself devices and hardware. “Arduino code is
essentially C and C++,” says Massimo Banzi, a cofounder of the
Arduino project. “Right now, you can write Arduino code on an 8-
bit microcontroller and then on an ARM processor. You can go right
up to a Samsung Artik, which is essentially a Linux machine with an
8-core processor. We can run Arduino on top of Windows 10”

Example 1-2. The same behavior as Example 1-1, using Arduino’s
simplified C dialect (from the book Arduino Cookbook, 2nd Edition)

const int ledPin = 13; // LED connected to digital pin 13

void setup()

{
pinMode(ledPin, OUTPUT);

}

void loop()

{
digitalWrite(ledPin, HIGH); // set the LED on
delay(2000); // wait for two seconds
digitalWrite(ledPin, LOW); // set the LED off
delay(2000); // wait for two seconds

}

Learning About Software by Tinkering with
Hardware

How does this play out in the real world? Let’s say youre an aero-
space engineer and you're asked to improve the functionality of an
actuator that moves a control surface, such as an aileron on the wing

2 | TheResurgence of C Programming

https://www.arduino.cc/
https://www.artik.io/
http://shop.oreilly.com/product/0636920022244.do

of an airplane. You might begin by using components from an
Arduino kit to create a low-cost prototype of the actuator.

After you've got your prototype working, you can tinker around
with it and optimize its performance. “If you are an engineer, you
can take your idea and use Arduino to build prototypes very fast,
says Banzi. “So you might begin with Arduino and then decide to
reimplement the code using another tool. But you might also wind
up using Arduino all the way. Or you could use a C compiler to
move your code to a piece of hardware that doesn’t run Arduino, but
will run C or C++7

Transferring the code isn’t difficult. The hard part, says Banzi, is
writing the algorithm that controls the actuator moving the aileron.
Fixing the problem with the aileron means you need to develop a
new algorithm. Then you need to tweak and adjust your algorithm.
“If it were my project, I would write my Arduino code for the tool
and then I would use a pure C or C++ file for my algorithm,” says
Banzi. “Once my project is working and I can tweak the algorithm, I
would just take the algorithm and paste it into the tool”

If youre working in closely regulated industries—such as automo-
tive, aviation, or healthcare—you might need to redesign your
Arduino prototype before deploying it. But there are lots of situa-
tions in which regulatory compliance wouldn’t pose a hurdle.

Let’s say you decide to build a digital watch for yourself. You could
buy a Time II DIY watch kit from SpikenzieLabs, follow the instruc-
tions that come with the kit, and create a nifty timepiece. But here’s
the really cool part: the watch is designed to be hackable. You can
reprogram the watch with Arduino IDE (integrated development
environment) software. Basically, the kit empowers you to create a
one-of-a-kind smartwatch by tweaking a few lines of Arduino code.

Working in Tight Spaces

Some obstacles are more difficult to overcome than others. When
youre building an open source wristwatch, for example, you might
decide to follow your muse, ignore the instructions, and install a
bigger battery or use a different color display.

“If youre designing it yourself, youre going to have a lot more
research to do because youre going to need to know how much
power you want to use. Youre going to need to figure out how to

Working in Tight Spaces | 3

http://www.spikenzielabs.com/Catalog/

program the display and what type of display you want to use,” says
Brian Jepson, an author, editor, and experienced digital fabricator.
“Once you've got the parts, you've got to put them together and pack
them into a case that you can wear on your wrist.”

Manufacturing a custom case for your open source watch will likely
involve 3D printing, which often requires some basic programming
skills. “Each part has to sit really close to the other parts. You don’t
have a lot of space. You can’t have wires running too long or too
short. It’s a tight fit and you have to make sure you make good, relia-

>

ble connections between the components,” Jepson says.

When all the parts are connected and packed securely in place
within the case, you can seal it up. But your work isn’t necessarily
done at that point. “If I were building it from scratch, following
somebody else’s instructions, I might have had to program it myself.
Or, if T ever want to customize it, to display things in a different way,
maybe to graph things, I'd have to download the source code, make
some changes, and then load it onto the device,” says Jepson.

Unforeseen Consequences

In a cosmic sense, Arduino fulfills the vision of C’s creators, who
foresaw a world of portable software applications. What they did not
anticipate, however, was the emergence of open source hardware,
the maker movement, and maker culture.

For the early pioneers of computing, creating functional software
was an end in itself. Today, it's not enough to just create software
that runs without crashing. The world wants software that can run
devices and machines such as trains, planes, automobiles, and pace-
makers—without crashing.

That puts a lot of weight on C, which is used widely to write embed-
ded software. “C is the Latin of programming languages,” says Ptah
Pirate Dunbar, an open source hacker and professor of computer
science. He notes that many commonly used high-level languages
are influenced by C through syntax, function, or both. “Learning C
empowers developers with the mental flexibility required for transi-
tioning across C-influenced languages with ease and agility”

George Alexandrou, vice president and chief information officer at
Mana Products, a global manufacturer of private-label cosmetics,
says there are two kinds of software developers: mechanics and

4 | The Resurgence of C Programming

engineers. “The mechanics will fix things when they break. But
when you want to design something new, you need an engineer,”
says Alexandrou. “If you want to be an engineer, you need to know
how to program in C. Programming in C can get you out of trouble.
It can also get you into trouble”

Extracting Maximum Performance

Suman Jana, an assistant professor in the Department of Computer
Science at Columbia University and a member of the Data Science
Institute, says the C language “allows expert programmers to extract
maximum performance from the underlying hardware resources.”

With C, programmers can control and customize almost every
aspect of their programs. “However, as a side effect, it is also very
easy for a programmer using C to inadvertently make serious mis-
takes, like memory corruption, that lead to security vulnerabilities,”
Jana says.

Buffer overflow is a “classic example of memory corruption in C
code,” he says. It can happen when a programmer copies data into a
preallocated buffer without checking whether or not the data will fit
into the buffer. If the user input is longer than the buffer, it will
overwrite past the boundary of the buffer. That can pose serious
security risks. When user input, for example, is written into a buffer
without bounds checking, the system can be susceptible to an injec-
tion attack. Why is that? When buffer overflow is triggered by user
input, the user can probe the system and potentially take control of
it.

Caveats aside, C is especially relevant to developers working on
embedded software for smart machines. “Embedded software often
runs in resource-constrained environments. The target devices have
small memory and limited computational power. For such environ-
ments, C is a very good fit because it allows programmers to get
good performance even with limited resources,” says Jana.

“Learning C is a good exercise to understand the underlying system
and hardware. Even if a Java/Python programmer does not use C on
a day-to-day basis, learning C can potentially help them understand
how different Java/Python features are actually implemented by vir-
tual machines. In fact, many Java/Python virtual machines are writ-
tenin C”

Extracting Maximum Performance | 5

http://www.cs.columbia.edu/
http://datascience.columbia.edu/
http://datascience.columbia.edu/
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Buffer_overflow

Jana sees plenty of good reasons for coders to learn C. “The C com-
munity is a large and thriving group. Some of the most popular and
widely used software—like the Linux kernel, Apache HTTP server,
and Google Chrome browser—are written in C/C++,” he notes.

Still Alive and Well

While there might be some vague similarities between C and Latin,
there are also stark differences. Latin is a dead language. C is most
definitely alive and well. A hardware hacker recently compared C to
Jason Voorhees, the main character in the Friday the 13th series of

horror movies. Just when you think Jason is dead, he comes roaring
back to life.

“Hardware has gotten more complex and there’s more to debug,’
says John Allred, an experienced developer of embedded software
and hardware interfaces. “Nowadays, the programmer is expected to
help with the debugging. I still believe that C programmers have a
mindset that helps them see the big picture. When you know C, it
helps you solve problems with hardware. It gives you a different way
of looking at the world”

Allred is senior manager of cybersecurity at Ernst and Young (EY).
After graduating from MIT and before joining EY, he participated in
a number of technical firsts: the first internal hard drive for the
Macintosh; SIMNET, the first large-scale networked simulation of
military vehicles; and RTIME, the first large-scale networking
engine for video games and distributed systems. He is an unabashed
fan of older programming languages like C, which require a thor-
ough understanding of how computers actually work.

“When you program in C, you control the memory. But when you
program in Java, it does the memory management for you. When
Java decides it’s time to clean up the memory, it goes ahead and does
it—even if youre in the middle of doing something else,” says
Allred. “With Java, there’s a higher level of abstraction. Youre not
driving the hardware directly”

If you're writing code for an online retailer, the loss of 100 milli-
seconds probably won't ring any alarm bells. But when you’re pro-
gramming software for real-time applications, lost moments can
make a big difference. “When youre writing code for drones or
driverless cars or oil refineries—situations where you need real-time

6 | The Resurgence of C Programming

http://bit.ly/2gCcqLD

performance—then Java and Python shouldn’t be your choices,” says
Allred.

The Right Tool for the Job

In some respects, Allred represents a vanishing generation of pro-
grammers who are comfortable with assembly code and have a deep
appreciation for its intrinsic value. Bare-metal coders are in the
minority, but many of their ideas are gaining new currency as the
lines between software development and hardware design become
less distinct. “I think it’s always really good to know how the soft-
ware interfaces with the hardware,” says Limor “Ladyada” Fried,
founder of Adafruit. “Understanding the limits of the hardware will
help you understand optimizations that are possible in the software”

If your project involves pushing data from a sensor across a wireless
link, for example, you need to know the limitations of the hardware.
Until you actually begin experimenting with that wireless link, says
Fried, you won’t know how much data it can handle. In those types
of situations, which are becoming more common, there is no substi-
tute for hands-on experience.

Ideally, your choice of a programming style should be determined
by the requirements of the project before you. “I think it depends on
your needs,” says Fried. “There are some times when you're really
optimizing and you want to go to machine code or FPGAs [field-
programmable gate arrays] or CPLDs [complex programmable logic
devices]; especially when youre doing extremely advanced, very
time-sensitive stuff like SDR [software-defined radio] or video
extreme handling, you might go with an FPGA. For most people, C
or C++ seems to dominate”

Simon Monk, a prolific author and experienced builder of open
hardware projects, says C is still the optimal choice for program-
ming on machines. “On a microcontroller, I would always use C. It’s
a good compromise between the performance of assembler and the
readability of a high-level language,” Monk says.

But he is not enthusiastic about the idea of hardware developers
replacing software engineers. “With a few honorable exceptions,
hardware developers should not be allowed to program...although
they would probably say the converse is true of software engineers
like me designing electronics,” he says.

The Right Tool for theJob | 7

https://www.adafruit.com/about

He faults machine code for being “almost universally opaque and
badly structured, with functions dozens of lines long.” And he raises
an interesting point about the inherent differences between hard-
ware and software developers, arguing that hardware developers are
often more focused on how a particular piece of hardware works,
instead of thinking more deeply about the service the hardware is
designed to provide.

For software engineers who want to write embedded code for hard-
ware, Monk advises taking small steps. “Don’t use the first library
you find on GitHub. Try out a few examples and if you don’t like the
API or the code smells, don’t be afraid to write your own,” he says.
“Also, don't get carried away with overstructuring or overpatterning
your code. A 50-line Arduino program does not benefit from being
split into three classes and a suite of unit tests and an implementa-
tion of the observer pattern”

“It’s Like Learning to Drive a Stick Shift”

Edward Amoroso, chief executive officer of TAG Cyber and former
chief information security officer at AT&T, says knowing C is handy,
but no longer absolutely essential. “You can drive your car to Buffalo
and not know how the engine works,” says Amoroso. “I think the
analogy holds for software. On the other hand, if something goes
wrong or some kind of weird issue arises and you have no under-
standing of the underlying logic of the software and the hardware, it
might be more difficult for you to fix the problem.”

From Amoroso’s perspective, the advantages of knowing C are at
best marginal in today’s world of highly abstracted software. “It gave
you a huge advantage 20 years ago and a good advantage 5 years
ago,” he says. “In the near future, however, it will probably be even
less of an advantage, given the level of abstraction and the power of
translators.”

Still, he isn’t ready to throw in the towel and abandon C to the ash
heap of history. “If youre programming on bare metal, then it’s
helpful to know C. It’s like learning how to drive a stick shift—it
gives you more control,” says Amoroso. “But for the most part, the
trend in software development is more toward the logical connec-
tion of working software components that are plucked from libraries
and put together”

8 | TheResurgence of C Programming

Amoroso says he misses the old days when students would actually
learn to write code. “Today, much to my chagrin, young people are
taught to code using programming environments where theyre
moving widgets around and creating little games. They’re basically
adding logic to widgets. 'm not saying it's necessarily harmful, but
I'd rather see them learn how a computer operates first, and then
build up to writing software. But that’s not the way it’s typically done
in schools today”

Learn by Doing

Educators and cognitive psychologists have long known the value of
hands-on learning. When you work with your hands, your brain is
actually more engaged than when you are simply listening or read-
ing.

Dale Dougherty, the founder and CEO of Maker Media, sees a ren-
aissance in hands-on education. Nowhere is this renaissance more
evident than at Maker Faire, a series of live events produced by
Maker Media. Maker Faire is “a family-friendly festival of invention,
creativity, and resourcefulness, and a celebration of the maker
movement.”

At a recent Maker Faire at the New York Hall of Science, Dougherty
emphasized the importance of combining “art, science, craft, and
engineering” in bold new ways that encourage both creativity and
technical capabilities. “What we see here at Maker Faire is a flourish-
ing of creative spirit and technical skills...coming together to make
new things possible,” he said in a talk at the event.

Visitors to the event saw dozens of exhibits from makers of drones,
robots, 3D printers, electric vehicles, rockets, wearables, alternative
energy solutions, and various combinations of hardware and soft-
ware.

Dougherty is one of several voices in the maker movement, which
has already transformed or disrupted many aspects of traditional
technology culture. The Raspberry Pi, for example, was developed
by a team at the University of Cambridge’s Computer Laboratory as
a tactic for enticing more students to study computer science.

The first version of the Pi, which is essentially an inexpensive single-
board computer, was released in early 2012. Since then, the Rasp-
berry Pi Foundation has sold 10 million devices.

LearnbyDoing | 9

https://makermedia.com/
http://makerfaire.com/
https://en.wikipedia.org/wiki/Raspberry_Pi

Although the Pi was initially designed for students, it is now used
widely by engineers and developers all over the world—a truly
amazing demonstration of the maker movements influence, both
inside and outside the classroom.

Everyday People Making New Tech

Tom Igoe is an associate arts professor at ITP, a two-year graduate
program within the Tisch School of the Arts at New York University.
Officially, ITP’s mission is exploring “the imaginative use of commu-
nications technologies,” and it’s become a launch pad for the expres-
sion of creativity through novel combinations of hardware and
software.

Igoe leads two areas of curriculum at ITP: physical computing and
networks. He has a background in theater lighting design and is a
cofounder of the Arduino open source microcontroller environ-
ment.

“All of the various technologies we're talking about play a big role in
our everyday life. It doesn’t matter whether we are a technologist or
engineer or whatever, they influence our everyday life,” says Igoe.
“But if we don’t have an understanding of them...then we don’t have
much control”

One of the ITP’s primary goals, says Igoe, is “breaking the barrier”
that prevents or discourages people from making their own devices
and machines. One of his students was a physical therapist who
wanted to create a device for helping patients improve their range of
motion following an illness or injury. “She didn't just want to
describe what she wanted and have someone else build it Igoe
explains. “She wanted to build it herself, so she could make the
design decisions based on her actual experience with her patients”

From Igoe’s viewpoint, the traditional tech industry has become too
doctrinaire in its approach to valuing talent. “They assume that
technical proficiency is the only measure of a person’s work. The
truth is that you need people with a lot of different capabilities,” he
says. “You need a lot of different skills and a lot of different ways of
seeing the world?”

Its not necessary for every student to become an engineer or
designer. “When I've got students who are not technically gifted, I

10 | TheResurgence of C Programming

try to help them figure out what they’re really good at and apply it to
making the kinds of things we're talking about,” says Igoe.

Much of the inspiration for Arduino, says Igoe, came from working
with students who were not engineers, but who were very interested
in using electronics and controllers in their projects. “Arduino is a
microcontroller that’s not designed for engineers; it’s designed for
everyday people,” he explains.

That said, Arduino is now used by a wide variety of people—includ-
ing engineers and designers—as a physical sketchbook for hardware
projects. Increasingly, it’s seen as an integral part of the prototyping
process.

The popularity of low-cost kits based on Arduino or Raspberry Pi
components has led to “an explosion of creativity,” says Mark Gibbs
of Gibbs Universal. He is an author, journalist, and serial tech entre-
preneur. “It’s easier now for people to enter the tech market with lit-
tle or no technical knowledge and then acquire the skills they need
to become very proficient at building devices and machines”

It's not just the low cost that makes Arduino and Raspberry Pi so
attractive—they’re also easy to work with, says Gibbs. “The impact
has been enormous. Now you have the ability to bring technology
into the arts, which is a huge thing in itself because it changes the
nature of what we consider to be art”

Gibbs cites the example of Sketchy, a drawing device created by
Richard Sewell (aka Jarkman) that combines an Android phone with
a delta robot based on Arduino components. Another example is
Robot Army, a team of artists and engineers that make easy-to-build
robot kits for people interested in learning and experimenting with
inexpensive robots. “Those kinds of projects would have been
inconceivable just a few years ago. You would have needed hundreds
of thousands of dollars to build a robot. Now you can build one for
under $100,” says Gibbs.

Blurring the Boundaries

The professional engineering community is not immune to the lure
of low-cost, easy-to-use tech like Arduino and Raspberry Pi. “In the
beginning, many professional developers laughed at our tools,
recalls Banzi. “They thought they were toys or kind of stupid”

Blurring the Boundaries | 11

http://gibbsuniversal.com
http://www.jarkman.co.uk/catalog/robots/sketchy.htm
http://www.jarkman.co.uk/
http://www.robot-army.com/about.html

Many of those professionals are no longer laughing. “Now they’re
using our tools to build quick and inexpensive prototypes,” says
Banzi. “More important, developer teams use tools like Arduino to
onboard beginner programmers more quickly. Now you can give
new programmers small tasks and projects that will help them build
their skills faster”

In many ways, the maker movement has blurred—or in some cases,
erased—the traditional boundaries between professional and ama-
teur science. While some people might reflexively argue against that
type of blurring, it harkens back to the times before the Industrial
Revolution, when practically all scientists were amateurs. Today, it
seems we no longer have to choose between being amateurs or pro-
fessionals—we can enjoy the best of both worlds, whether we choose
to write code in C or assemble parts from a kit.

12 | TheResurgence of C Programming

About the Author

Mike Barlow is an award-winning journalist, author, and communi-
cations strategy consultant. Since launching his own firm, Cumulus
Partners, he has worked with various organizations in numerous
industries.

Barlow is the author of Learning to Love Data Science (O’Reilly,
2015). He is the coauthor of The Executive’s Guide to Enterprise
Social Media Strategy (Wiley, 2011) and Partnering with the CIO
(Wiley, 2007). He is also the writer of many articles, reports, and
white papers on numerous topics including smart cities, ambient
computing, predictive maintenance, advanced data analytics, and
infrastructure.

Over the course of a long career, Barlow was a reporter and editor at
several respected suburban daily newspapers, including the Journal
News and the Stamford Advocate. His feature stories and columns
appeared regularly in the Los Angeles Times, Chicago Tribune, Miami
Herald, Newsday, and other major US dailies. He has also written
extensively for O'Reilly Media.

A graduate of Hamilton College, he is a licensed private pilot, avid
reader, and enthusiastic ice hockey fan.

http://shop.oreilly.com/product/0636920044284.do

	Cover
	Business
	Copyright
	Table of Contents
	Chapter 1. The Resurgence of C Programming
	Learning About Software by Tinkering with Hardware
	Working in Tight Spaces
	Unforeseen Consequences
	Extracting Maximum Performance
	Still Alive and Well
	The Right Tool for the Job
	“It’s Like Learning to Drive a Stick Shift”
	Learn by Doing
	Everyday People Making New Tech
	Blurring the Boundaries

	About the Author

