
Lecture #10 – C for Python Programmers

Aykut Erdem, Fuat Akal & Aydın Kaya // Fall 2018

BBM 101
Introduction to
Programming I

Last time… How to Develop a
Program, Algorithmic Complexity

2

Today

• How Python & C are similar

• How Python & C are different

• Variables, Operators, If-Else Statements, Arrays in C

3

Creating computer programs

• Each programming language provides a set of
primitive operations

• Each programming language provides mechanisms
for combining primitives to form more complex, but
legal, expressions

• Each programming language provides mechanisms
for deducing meanings or values associated with
computations or expressions

Slide credit: E. Grimson, J. Guttag and C. Terman

Recall our goal

• Learn the syntax and semantics of a programming
language

• Learn how to use those elements to translate
“recipes” for solving a problem into a form that the
computer can use to do the work for us

• Computational modes of thought enable us to use a
suite of methods to solve problems

Slide credit: E. Grimson, J. Guttag and C. Terman

Recall: Dimensions of a PL

• Low-level vs. High-level
– Distinction according to the level of abstraction

– Low-level programming languages (e.g. Assembly)

– High-level programming language (e.g. C, Java)

• General vs. Targeted
– Distinction according to the range of applications (MATLAB, R vs

Python,C)

• Interpreted vs. Compiled

– Distinction according to how the source code is executed

• Programming Paradigms

– Functional, Declerative, Object Oriented, Imperative, etc.

C (1973)

• Developed by Ken Thompson and Dennis Ritchie at
AT&T Bell Labs for use on the UNIX operating system.

– now used on practically every operating system

– popular language for writing system software

• Features:

– An extremely simple core language, with non-essential
functionality provided by a standardized set of library routines.

– Low-level access to computer memory via the use of pointers.

• C ancestors: C++, C#, Java

7

Slide credit: Thomas J. Cortina

Python

• Created by Guido van Rossum in the late 1980s

• Allows programming in multiple paradigms: object-
oriented, structured, functional

• Uses dynamic typing and garbage collection

Slide credit: Thomas J. Cortina

Building a simple program in C
(as compared to Python)

• Compilers versus interpreters

• Keywords

• Variable declarations

• Arrays

• Whitespace and Braces

• The printf() function

• The scanf() function

• If-Else Statements

9

Compilers versus interpreters

• One major difference between C and Python is how the
programs written in these two languages are executed.

• With C programs, you usually use a compiler when you
are ready to see a C program execute.

• By contrast, with Python, you typically use an interpreter.

10

Compilers versus Interpreters

• An interpreter reads the user-written program and
performs it directly.

• A compiler generates a file containing the translation
of the program into the machine's native code.

– The compiler does not actually execute the program!

– Instead, you first execute the compiler to create a native
executable, and then you execute the generated executable.

• C is designed so the compiler can tell everything it needs to
know to translate the C program without actually executing the
program.

11

The Programming Process in C

• After creating a C program, executing it is a two step
process:

me@computer:~$ gcc my_program.c –o my_program

me@computer:~$./my_program

12

The Programming Process in C

me@computer:~$ gcc my_program.c –o my_program

me@computer:~$./my_program

• invokes the compiler, named gcc.

• The compiler reads the source file my_program.c
containing the C codes

• It generates a new file named my_program containing
a translation of this code into the binary code used by
the machine.

13

The Programming Process in C

me@computer:~$ gcc my_program.c –o my_program

me@computer:~$./my_program

• tells the computer to execute this binary code.

• As it is executing the program, the computer has no idea
that my_program was just created from some C
program.

14

The Programming Process in C

Create/Edit
Program

Compile Execute

“The cycle ends once the programmer is satisfied with the
program, e.g., performance and correctness-wise.”

Keywords

• 32 words defined as keywords in C

• have predefined uses and cannot be used for any other
purpose in a C program

auto double int struct

break else long switch

case enum register typedef

char extern return union

Const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

General Form of a C Program

Preprocessor directives

Declarations – variables
functions

main function {
declarations

statements
}

A Simple C Program

/* Hello world! Example*/

#include <stdio.h>

int main()

{

printf(“Hello world!\n”);

return 0;

}

Hello world!

Identifiers

• A sequence of letters, digits, and the special character ‘_’
satisfying:

identifier = α {α + #}*

with α = {A,…,Z,a,…,z,_ }, #={0,…,9}, and
* means “0 or more”

• Case-sensitive (as in Python)
e.g. Ali and ali are two different identifiers.

• Identifiers are used for:
– Variable names

– Function names

Identifiers (Cont.)

• Sample valid identifiers
x

a1

_xyz_33

integer1

Double

• Sample invalid identifiers

xyz.1

gx^2

114West

int

pi*r*r

Variable declarations

• C requires variable declarations, informing the
compiler about the variable before the variable is
actually used.

• In C, the variable declaration defines the
variable's type.

• No such thing in Python!

21

Declaring a Variable

• Declaring a variable is simple enough.

• You enter the variable's type, some whitespace,
the variable's name, and a semicolon:

double x;

• Value assignment is similar to Python:

x=3;

• x will actually hold the floating-point value 3.0 rather
than the integer 3.

• However, once you declare a variable to be of a
particular type, you cannot change its type!

22

Declaring a Variable

• In C, variable declarations belong at the top of the
function in which they are used.

• If you forget to declare a variable, the compiler will
refuse to compile the program:

– A variable is used but is not declared.

• To a Python programmer, it seems a pain to have to
include these variable declarations in a program,
though this gets easier with more practice.

23

Variable Declarations (Cont.)

• A declaration consists of a data type name followed
by a list of (one or more) variables of that type:
char c;

int ali, bora;

float rate;

double trouble;

• A variable may be initialized in its declaration.
char c = ‘a’;

int a = 220, b = 448;

float x = 1.23e-6; /*0.00000123*/

double y = 27e3; /*27,000*/

Variable Declarations (Cont.)

#include <stdio.h>

int main()

{

int a;

double b;

char c;

float d;

printf("int: %d \n",a);

printf("double: %lf \n",b);

printf("char: %c \n",c);

printf("float: %f \n",a);

return 0;

}
25

• Variables that are not initialized may have garbage values.

For online C editor: Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

Basic types in C

• C's list of basic types is quite constrained.

int for an integer

char for a single character

float for a single-precision floating-point number

double for a double-precision floating-point number

• Data Type Modifiers

– signed / unsigned

– short / long

26

Basic Data Types

Type Size in Bytes Range

signed char 1 -127 to +127

unsigned char 1 0 to 255

short int 2 -32,767 to +32,767

unsigned short int 2 0 to 65535

int 4 -2,147,483,648 to

2,147,483,647

unsigned int 4 0 to 65,535

long int 8 -2,147,483,647 to +2,147,483,647

unsigned long int 8 0 to 4,294,967,295

float 4 ~10-37 to ~1038

double 8 ~10-307 to ~10308

long double 16 ~10-4931 to ~104932

No Boolean type for representing
true/false

• This has major implications for a statement like if, where
you need a test to determine whether to execute the
body. C's approach is to treat the integer 0 as false and all
other integer values as true.

• Example

28

int main() {

int i = 5;

if (i) {

printf("in if\n");

}

else {

printf("in else\n");

}

return 0;

}

prints “in if” when
executed since the
value of (i) is 5
which is not 0

No Boolean type in C!

• C's operators that look like they should compute Boolean
values (like ==, &&, and ||) actually compute int values
instead.

• In particular, they compute 1 to represent true and 0 to
represent false.

• This means that you could legitimately type the following
to count how many of a, b, and c are positive.

29

pos = (a > 0) + (b > 0) + (c > 0);

No Boolean type in C!

• This quirk — that C regards all non-zero integers as
true — is generally regarded as a mistake, and it
leads to confusing programs, so most expert C
programmers eschew using the shortcut, preferring
instead to explicitly compare to zero as a matter of
good programming style.

• You may use external library «stdbool.h» or define
your own constant (we’ll see later) as true and false.

30

Arithmetic Operators

Major operators in C and Python

• They look similar but there are some significant
differences 31

C operator precedence Python operator precedence
++ -- (postfix) **

+ - ! (unary) + - (unary)
* / % * / % //

+ - (binary) + - (binary)
< > <= >= < > <= >= == !=

== != not

&& and

|| or
= += -= *= /= %=

Arithmetic Operators

• For arithmetic calculations
– Use + for addition, - for substraction, * for multiplication

and / for division

– Integer division truncates remainder
• 7 / 5 evaluates to 1

– Modulus operator (%) returns the remainder
• 7 % 5 evaluates to 2

• Arithmetic operators associate left to right.

• Operator precedence

– Example: Find the average of three variables a, b and c
• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

Arithmetic Operators (Cont.)

Operator(s) Operation(s) Order of evaluation (precedence)

()
Parentheses Evaluated first. If the parentheses are nested,

the expression in the innermost pair is
evaluated first. If there are several pairs of
parentheses “on the same level” (i.e., not
nested), they are evaluated left to right.

*, /, or %
Multiplication,
Division,
Modulus

Evaluated second. If there are several, they are
evaluated left to right.

+ or -
Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

34

Logical Operators

• && (logical AND)
– Returns true if both conditions are true

• || (logical OR)
– Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
– Reverses the truth/falsity of its condition
– Unary operator, has one operand

• Useful as conditions in loops

Expression Result

true && false false
true || false true

!false true

35

All Operators

Operators Associativity Type

++ -- + - ! (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

, left to right comma

Operator precedence and associativity.

Operators in C – Important Distinctions

• C does not have an exponentiation operator like Python's
** operator. For exponentiation in C, you'd want to use
the library function pow(). For example,
pow(1.1, 2.0) computes 1.1².

• C uses symbols rather than words for the Boolean
operations AND (&&), OR (||), and NOT (!).

• The precedence level of NOT (the ! operator) is very high
in C. This is almost never desired, so you end up needing
parentheses most times you want to use the ! operator.

36

Operators in C – Important Distinctions

• C's operators ++ and -- are for incrementing and
decrementing a variable. Thus, the statement “i++” is a
shorter form of the statement “i = i + 1” (or “i +=

1”).”

• C's division operator / does integer division if both sides
of the operator have an int type; that is, any remainder is
ignored with such a division.
– Thus, in C the expression “13/5” evaluates to 2, while

“13/5.0” is 2.6: The first has integer values on each
side, while the second has a floating-point number on the
right.

37

Operators in C - Example

38

#include <stdio.h>

#include <math.h>

int main()

{

int a = 5, b = 6, c = 10;

float p;

p = ((a == 5) + (b < 10) + (c > 15)) * (c++)

/ (++b);

printf("p = %f\n", p);

a = 5, b = 6, c = 10;

p = ((a == 5) + (b < 10) + (c > 15)) * (c++)

/ (float)(++b);

printf("p = %f\n", p);

// you have to include math.h for pow function

printf("Value 4.2 ^ 2 = %lf\n", pow(4.2, 2));

}

For online C editor: Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

Operators in C – Important Distinctions

• C defines assignment as an operator, whereas Python
defines assignment as a statement.

• The value of the assignment operator is the value
assigned.

• A consequence of C's design is that an assignment can
legally be part of another statement.

• Example:

39

#include <stdio.h>

int main()

{

char a;

while((a=getchar()) != 'e')

{

printf("char: %c\n", a);

}

return 0;

}

Type Conversion and Casting

• In an operation, if operands are of mixed data types,
the compiler will convert one operand to agree with the
other using the following hierarchy structure:

long double (highest)

double

float

long

int

char/short (lowest)

char

short
int long float double

long

double

Type Conversion and Casting (Cont.)

• implicit (automatic) type conversion
– done automatically by the compiler whenever data from

different types is intermixed.

– int i;

double x = 17.7;

i = x;

– float x;

int i = 17;

x = i;

i=17

x=17.0

Type Casting Example

42

#include <stdio.h>

int main()

{

int a = 17;

float b = 2.275;

char c = 'B', d = 'e';

printf("Integer value of b is %d\n" , (int)b);

printf("Float value of a is %f\n", (float)a);

printf("Int value(ASCII code) of c variable is %d\n", (int)c);

printf("Double value(ASCII code) of d variable is %lf\n", (double)d);

printf("\n\n");

return 0;

}

For online C editor: Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

Whitespace

• In Python, whitespace characters like tabs and newlines

are important:

– You separate your statements by placing them on separate

lines, and you indicate the extent of a block using

indentation.

– like the body of a while or if statement

• C does not use whitespace except for separating words.

• Most statements are terminated with a semicolon ';', and

blocks of statements are indicated using a set of braces,

'{' and '}'.

43

Whitespace

C fragment
disc = b * b - 4 * a * c;

if (disc < 0)

{

num_sol = 0;

}

else

{

t0 = -b / a;

if (disc == 0)

{

num_sol = 1;

sol0 = t0 / 2;

}

else

{

num_sol = 2;

t1 = sqrt(disc) / a;

sol0 = (t0 + t1) / 2;

sol1 = (t0 - t1) / 2;

}

}

Python equivalent
disc = b * b - 4 * a * c

if disc < 0:

num_sol = 0

else:

t0 = -b / a

if disc == 0:

num_sol = 1

sol0 = t0 / 2

else:

num_sol = 2

t1 = disc ** 0.5 / a

sol0 = (t0 + t1) / 2

sol1 = (t0 - t1) / 2

44

Whitespace

• As said, whitespace is insignificant in C.

• The computer would be just as happy if the previous
code fragment is written as follows:

disc=b*b-4*a*c;if(disc<0){

num_sol=0;}else{t0=-b/a;if(

disc==0){num_sol=1;sol0=t0/2

;}else{num_sol=2;t1=sqrt(disc/a;

sol0=(t0+t1)/2;sol1=(t0-t1)/2;}}

• However, do not write your programs like this!

45

The printf()function

• In Python, displaying results for the user is

accomplished by using print.

• In C, instead you use the printf()function which is

provided by the C's standard library.

• The way the parameters to printf()work is

a bit complicated but also quite convenient.

46

The printf()function

• The first parameter is a string specifying the format of what to
print, and the following parameters indicate the values to
print.

• Consider the following example:

printf("# solns: %d\n", num_sol);

• “# solns: %d\n” is the format string, num_sol is the
value to be printed.

• The percent character is special to printf().

– It says to print a value specified in a subsequent parameter.

– %d for integers/decimals

• If the value stored in num_sol is 2, the output is:

solns: 2

47

The printf()function

• Like Python, C allows you to include escape
characters in a string using a backslash:

– The “\n” sequence represents the newline character,

– The “\t” sequence represents the tab character,

– “ \" ” sequence represents the double-quote character,

– “ \\ ” sequence represents the backslash character.

• These escape characters are part of C syntax, not
part of the printf() function.

48

The printf()function

• Let's look at another example.

printf("N. of solns: %d\n", num_sol);

printf("solns: %f, %f", sol0, sol1);

• Let's assume num_sol holds 2, sol0 holds 4,

and sol1 holds 1.

• When the computer reaches these two printf() function

calls, it executes them sequentially.

• The output is:

N. of solns: 2

solns: 4.0, 1.0

49

The printf()function

• There's a variety of characters that can follow the percent

character in the formatting string.

– %d, as we've already seen, says to print an int value in decimal

form.

– %f says to print a double value in decimal-point form.

– %e says to print a double value in scientific notation (for

example, 3.000000e8).

– %c says to print a char value.

– %s says to print a string.

• There's no variable type for representing a string, but C does

support some string facilities using arrays of characters.
50

The printf()example

51

#include <stdio.h>

int main()

{

char ch = 'A';

char str[15] = "sample str";

float flt = 10.234;

int no = 150;

double dbl = 20.123456;

printf("Character is %c \n", ch);

printf("String is %s \n" , str);

printf("Float value is %f \n", flt);

printf("Integer value is %d\n" , no);

printf("Double value is %lf \n", dbl);

printf("Octal value is %o \n", no);

printf("Hexadecimal value is %x \n", no);

return 0;

}
For online C editor:
Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

The scanf()function

• In Python, obtaining value from the user (by standard input) is

accomplished by using input.

• In C, instead you use the scanf()function which is provided

by the C's standard library.

• The way the parameters to scanf()work is quite similar

with printf()function.

52

The scanf()function

• The first parameter is a string specifying the format of what to
print to user.

• Consider the following example:

int age;

printf("Enter your age:");

scanf("%d", &age);

• The format specifier %d is used in scanf() statement.
So that, the value entered is received as an integer and
%s for string.

• Ampersand is used before variable name “ch” in
scanf() statement as &ch.

53

The scanf()function

• & character means, store the value on the variables
address position on memory. We will talk about it later.

printf("Enter any character \n");

scanf("%c", &ch);

printf("Entered character is %c \n", ch);

printf("Enter any string (upto 100 character)\n");

scanf("%s", &str);

printf("Entered string is %s \n", str);

int anInt; long l;

scanf("%d %ld", &anInt, &l);

54

If Else Statements

• An if statement
– Works very similarly to Python's if statement

– The only major difference is the syntax:
• In C, an if statement's condition must be enclosed in

parentheses, there is no colon following the condition,
and the body has a set
of braces enclosing it.

• As we've already seen, C does not have an elif clause as
in Python; instead, C programmers use the optional-
brace rule and write “else if”.

– Example:

55

if (x < 0) { printf("negative"); }

Braces (example on If Else)

• Several statements, like the if statement, include a body
that can hold multiple statements.

• Typically the body is surrounded by braces ('{' and '}') to
indicate its extent. But when the body holds only a single
statement, the braces are optional.

• Example:

56

if (first > second)

max = first;

else

max = second;

Braces (example on If Else)

• C programmers use this quite often when they want one
of several if tests to be executed.

• Example:

57

disc = b * b - 4 * a * c;

if (disc < 0) {

num_sol = 0;

}

else {

if (disc == 0) {

num_sol = 1;

}

else {

num_sol = 2;

}

}

Notice that the
else clause here
holds just one
statement (an
if…else

statement), so we
can omit the
braces around it.

Braces (example on If Else)

• C programmers use this quite often when they want one
of several if tests to be executed.

• Example:

58

disc = b * b - 4 * a * c;

if (disc < 0) {

num_sol = 0;

}

else

if (disc == 0) {

num_sol = 1;

}

else {

num_sol = 2;

}

But this situation
arises often enough
that C programmers
follow a special rule
for indenting in this
case — a rule that
allows all cases to be
written at the same
level of indentation.

Braces (example on If Else)

• C programmers use this quite often when they want one
of several if tests to be executed.

• Example:

59

disc = b * b - 4 * a * c;

if (disc < 0) {

num_sol = 0;

}

else if (disc == 0) {

num_sol = 1;

}

else {

num_sol = 2;

}

Arrays

• Python supports many types that combine the basic atomic
types into a group: tuples, lists, strings, dictionaries, sets.

• C's support is much more rudimentary: The only composite
type is the array
– Similar to Python's list except that an array in C cannot grow or

shrink — its size is fixed at the time of creation.

• Example:

• Another way to make an array, if you know all the elements
upfront, is:

60

double pops[50];

pops[0] = 897934;

pops[1] = pops[0] + 11804445;

char vowels[6] = {'a', 'e', 'i', 'o', 'u', 'y'};

Defining Arrays
• When defining arrays, specify

• Name

• Type of array

• Number of elements
arrayType arrayName[numberOfElements];

Examples:
int c[10];

float myArray[3284];

• Defining multiple arrays of same type
• Format similar to regular variables

• Example:
int b[100], x[27];

16.0 12.0 6.0 8.0 2.5 12.0 14.0 -54.5

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

double x[8];

i=5

x[i-1] = x[i]

x[i] = x[i+1]

x[i]-1 = x[i] Illegal assignment statement!

Defining Arrays

Examples Using Arrays

• Initializers

int n[5] = {1, 2, 3, 4, 5};

− If not enough initializers, rightmost elements become 0
int n[5] = { 0 }

All elements 0

− C arrays have no bounds checking

• If size omitted, initializers determine it

int n[] = { 1, 2, 3, 4, 5 };

− 5 initializers, therefore 5 element array

Arrays

• C does not have an support for accessing the length of an
array once it is created; that is, there is nothing
analogous to Python's len(pops)
– But you may find the length by sizeof

function. We’ll discuss it later.

• What happens if you access an array index outside the
array, like accessing pops[50] or pops[-100]?
– With Python, this will terminate the program with a

friendly message pointing to the line at fault and saying
that the program went beyond the array bounds.

– C is not nearly so friendly. When you access beyond an
array bounds, it blindly does it.

64

16.0 12.0 6.0 8.0 2.5 12.0 14.0 -54.5

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

double x[8];

i=5

printf(“%.1f”, x[i]+1);

printf(“%.1f”, x[i]+i);

printf(“%.1f”, x[i+1]);

printf(“%.1f”, x[i+i]);

printf(“%.1f”, x[2*i]);

printf(“%.1f”, x[2*i-3]);

printf(“%.1f”, x[(int)x[4]]);

printf(“%.1f”, x[i++]);

printf(“%.1f”, x[--i]);

13.0

17.0

14.0

invalid

invalid

-54.5

6.0

12.0

12.0

May result in a run-time
error or
Display incorrect results

Examples Using Arrays

Arrays example

66

#include <stdio.h>

int main()

{

int a[10];

printf(" Element at index %d : %d \n", 0 , a[0]);

printf(" Element at index %d : %d \n", 1 , a[1]);

printf(" Element at index %d : %d \n", 55 , a[55]);

printf(" Element at index %d : %d \n", -50 , a[-50]);

}

For online C editor: Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

Arrays – Warning!

• The lack of array-bounds checking can lead to very difficult
bugs, where a variable's value changes mysteriously
somewhere within hundreds of functions, and you as the
programmer must determine where an array index was
accessed out of bounds. This is the type of bug that takes a lot
of time to uncover and repair.

• Every once in a while, you'll see a C program crash, with a
message like “segmentation fault”. It won't helpfully include
any indication of what part of the program is at fault: all you
get is those those two words. Such errors usually mean that
the program attempted to access an invalid memory location.
This may indicate an attempt to access an invalid array
index.

67

Comments

• In C's original design, all comments begin with a slash
followed by an asterisk (“/*”) and end with an asterisk
followed by a slash (“*/”).

• The comment can span multiple lines.

• Example:

68

/* gcd - returns the greatest common

* divisor of its two parameters */

int gcd(int a, int b) {

...

Comments

• C++ introduced a single-line comment that has proven so
handy that most of today's C compilers also support it.

• It starts with two slash characters (“//”) and goes to the
end of the line.

• Example:

69

...

// assign sth. to x

x= a * r * r;

...

Constants

• #define directive tells the preprocessor to substitute
all future occurrences of some word with something else.

• You can use const prefix to declare constants.

• Example:

– The preprocessors automatically translate the above
expression into:

70

#define PI 3.14159

r = 4;

printf("area: %f\n", PI * r * r);

printf("area: %f\n", 3.14159 * r * r);

Constants – True/False

71

#include <stdio.h>

#define TRUE 1

#define FALSE 0

int main()

{

const int ANOTHER_TRUE = 1;

const int ANOTHER_FALSE = 0;

if(ANOTHER_TRUE == TRUE){

printf(" It’s True!!! ");

}else{

printf(" It’s False :(");

}

return 0;

}

For online C editor: Tutorialspoint

https://www.tutorialspoint.com/compile_c_online.php

