
Lecture #03 – Introduction to Python and
Programming, Control Flow

Aykut Erdem, Fuat Akal & Aydın Kaya // Fall 2018

BBM 101
Introduction to
Programming I

Monty Python and the Holy Grail (1975)

Last time… How to build computers

2

Memory

Control ALU PC

inst1
inst2
inst3
.
.
instN

A Simple HMMM Program

triangle1.hmmm: Calculate the approximate area of a triangle.

0 read r1 # Get base b
1 read r2 # Get height h
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

$ python hmmmAssembler.py -f triangle1.hmmm -o triangle1.b

ASSEMBLY SUCCESSFUL

0 : 0000 0001 0000 0001 0 read r1 # Get base b
1 : 0000 0010 0000 0001 1 read r2 # Get height h
2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1
3 : 0001 0010 0000 0010 3 setn r2 2
4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2
5 : 0000 0001 0000 0010 5 write r1
6 : 0000 0000 0000 0000 6 halt

$ python hmmmSimulator.py -f triangle1.b -n
4
5
10

4 / 14

A Simple HMMM Program

triangle1.hmmm: Calculate the approximate area of a triangle.

0 read r1 # Get base b
1 read r2 # Get height h
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

$ python hmmmAssembler.py -f triangle1.hmmm -o triangle1.b

ASSEMBLY SUCCESSFUL

0 : 0000 0001 0000 0001 0 read r1 # Get base b
1 : 0000 0010 0000 0001 1 read r2 # Get height h
2 : 1000 0001 0001 0010 2 mul r1 r1 r2 # b times h into r1
3 : 0001 0010 0000 0010 3 setn r2 2
4 : 1001 0001 0001 0010 4 div r1 r1 r2 # Divide by 2
5 : 0000 0001 0000 0010 5 write r1
6 : 0000 0000 0000 0000 6 halt

$ python hmmmSimulator.py -f triangle1.b -n
4
5
10

4 / 14

power
output

input

0.0V
0.5V

2.8V
3.3V

0 1 0

Boolean Algebra and Functions

Any function of boolean variables, no matter how complex, can be expressed in terms

of AND, OR, and NOT

Consider the proposition “if you score over 93% in this course, then you will get an A”

The truth values for the above proposition is given by the “implication” function

(x =) y) having the following truth table

x y x =) y
0 0 1

0 1 1

1 0 0

1 1 1

The function can be compactly written as NOT x OR x AND y (or x̄+ xy)

10 / 21

The Harvey Mudd Miniature Machine (HMMM)

Lecture Overview
• Programming languages (PLs)

• Introduction to Python and Programming

3

Disclaimer: Much of the material and slides for this lecture were borrowed from
—E. Grimson, J. Guttag and C. Terman MIT 6.0001 class
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class
—Swami Iyer’s Umass Boston CS110 class

Lecture Overview
• Programming languages (PLs)

• Introduction to Python and Programming

4

Programming Languages

• Syntax and semantics

• Dimensions of a PL

• Programming paradigms

Programming Languages
• An artificial language designed to express

computations that can be performed by a machine,
particularly a computer.

• Can be used to create programs that control the
behavior of a machine, to express algorithms
precisely, or as a mode of human communication.

• e.g., C, C++, Java, Python, Prolog, Haskell, Scala, etc..

Creating Computer Programs
• Each programming language provides a set of

primitive operations.

• Each programming language provides mechanisms
for combining primitives to form more complex, but
legal, expressions.

• Each programming language provides mechanisms
for deducing meanings or values associated with
computations or expressions.

Aspects of Languages
• Primitive constructs
– Programming language – numbers, strings, simple

operators
– English – words

• Syntax – which strings of characters and symbols are
well-formed
– Programming language –we’ll get to specifics shortly, but

for example 3.2 + 3.2 is a valid C expression
– English – “cat dog boy” is not syntactically valid, as not

in form of acceptable sentence

Aspects of Languages
• Static semantics – which syntactically valid strings

have a meaning

– English – “I are big” has form <noun> <intransitive verb>
<noun>, so syntactically valid, but is not valid English
because “I” is singular, “are” is plural

– Programming language – for example, <literal> <operator>
<literal> is a valid syntactic form, but 2.3/’abc’ is a static
semantic error

Aspects of Languages
• Semantics – what is the meaning associated with a

syntactically correct string of symbols with no static
semantic errors

– English – can be ambiguous
• “They saw the man with the telescope.”

– Programming languages – always has exactly one
meaning
• But meaning (or value) may not be what programmer

intended

Where Can Things Go Wrong?
• Syntactic errors

– Common but easily caught by computer

• Static semantic errors
– Some languages check carefully before running, others check

while interpreting the program
– If not caught, behavior of program is unpredictable

• Programs don’t have semantic errors, but meaning may
not be what was intended
– Crashes (stops running)
– Runs forever
– Produces an answer, but not programmer’s intent

Our Goal
• Learn the syntax and semantics of a programming

language

• Learn how to use those elements to translate
“recipes” for solving a problem into a form that the
computer can use to do the work for us

• Computational modes of thought enable us to use a
suite of methods to solve problems

Dimensions of a Programming Language
Low-level vs. High-level

• Distinction according to the level of abstraction

• In low-level programming languages (e.g. Assembly),
the set of instructions used in computations are very
simple (nearly at machine level)

• A high-level programming language (e.g. Python, C,
Java) has a much richer and more complex set of
primitives.

• Distinction according to the range of applications

• In a general programming language, the set of
primitives support a broad range of applications.

• A targeted programming language aims at a very
specific set of applications.
– e.g., MATLAB (matrix laboratory) is a programming language

specifically designed for numerical computing (matrix and
vector operations)

Dimensions of a Programming Language
General vs. Targeted

• Distinction according to how the source code is
executed

• In interpreted languages (e.g. LISP), the source code
is executed directly at runtime (by the interpreter).
– Interpreter control the flow of the program by going

through each one of the instructions.

• In compiled languages (e.g. C), the source code first
needs to be translated into an object code (by the
compiler) before the execution.

Dimensions of a Programming Language
Interpreted vs. Compiled

Programming Language Paradigms
• Functional

• Treats computation as the evaluation of mathematical functions
(e.g. Lisp, Scheme, Haskell, etc.)

• Imperative
• Describes computation in terms of statements that change a

program state (e.g. FORTRAN, BASIC, Pascal, C, etc.)

• Logical (declarative)
• Expresses the logic of a computation without describing its control

flow (e.g. Prolog)

• Object oriented
• Uses "objects" – data structures consisting of data fields and

methods together with their interactions – to design applications
and computer programs (e.g. C++, Java, C#, Python, etc.)

Programming Language Paradigms
• Functional

• Treats computation as the evaluation of mathematical functions
(e.g. Lisp, Scheme, Haskell, etc.)

• Imperative
• Describes computation in terms of statements that change a

program state (e.g. FORTRAN, BASIC, Pascal, C, etc.)

• Logical (declarative)
• Expresses the logic of a computation without describing its control

flow (e.g. Prolog)

• Object oriented
• Uses "objects" – data structures consisting of data fields and

methods together with their interactions – to design applications
and computer programs (e.g. C++, Java, C#, Python, etc.)

Lecture Overview
• Programming languages (PLs)

• Introduction to Python and Programming

18

Programming in Python
• Our programming

environment
– Python programming

language
– PyCharm, an integrated

development environment
(IDE)

– Terminal

19

Programming in Python
• To program in Python
– Compose a program by typing it into a file named, say,
helloworld.py

– Run (or execute) the program by typing python
helloworld.py in the terminal window

20

Editor
(PyCharm)

compiler/
interpreter
(python)

helloworld.py Hello, World

Input and Output
• Bird’s-eye view of a Python program

– Input types: command-line arguments, standard input, file
input

– Output types: standard output, file output, graphical
output, audio output

21

my_program.pyinput output

Input and Output
• Command-line arguments are the inputs we list after a program

name when we run the program

$ python my_program.py arg_1 arg_2 ... arg_n

• The command-line arguments can be accessed within a program,
such as my_program.py above, via the array (aka list) sys.argv1

as sys.argv[1], sys.argv[2], . . . , sys.argv[n]

• The name of the program (my_program.py) is stored in
sys.argv[0]

22

1 The sys module provides access to variables and functions that interact with the Python interpreter

Input and Output
import sys

print('Hi, ', end='')
print(sys.argv[1], end='')
print(’. How are you?')

23

$ python useargument.py Alice
Hi, Alice. How are you?
$ python useargument.py Bob
Hi, Bob. How are you?
$ python useargument.py Carol
Hi, Carol. How are you?

useargument.py

1. Python is like a calculator 2. A variable is a container

4. A program is a recipe3. Different types cannot be compared

24

1. Python is Like a Calculator

25

You Type Expressions.
Python Computes Their Values.
• 5

• 3+4

• 44/2

• 2**3

• 3*4+5*6

• (72 – 32) / 9 * 5

26

Python has a natural and well-defined
set of precedence rules that fully
specify the order in which the operators
are applied in an expression

• For arithmetic operations, multiplication

and division are performed before addition

and subtraction

• When arithmetic operations have the same

precedence, they are left associative, with

the exception of the exponentiation

operator **, which is right associative

• We can use parentheses to override

precedence rules

An Expression is Evaluated
From the Inside Out

• How many expressions are in this Python code?

(72 – 32) / 9.0 * 5

an expression values

(72 – 32) / 9.0 * 5
(40) / 9.0 * 5
40 / 9.0 * 5
4.44 * 5
22.2

27

Another Evaluation Example

(72 – 32) / (9.0 * 5)
(40) / (9.0 * 5)
40 / (9.0 * 5)
40 / (45.0)
40 / 45.0
.888

28

2. A Variable is a Container

29

A variable is a name associated
with a data-type value

Variables Hold Values

• Recall variables from algebra:
– Let x = 2 …
– Let y = x …

• To assign a variable, use “varname = expression”
pi = 3.14
pi
var = 6*10**23
22 = x # Error!

• Not all variable names
are permitted!

No output from an
assignment statement

30

• Variable names must only be one word
(as in no spaces)

• Variable names must be made up of only
letters, numbers, and underscore (_)

• Variable names cannot begin with a
number

Changing Existing Variables
(“re-binding” or “re-assigning”)

x = 2
x
y =
y
x = 5
x
y

• “=” in an assignment is not a promise of eternal equality
– This is different than the mathematical meaning of “=”

• Evaluating an expression gives a new (copy of a) number,
rather than changing an existing one

2x

31

How an Assignment is Executed

1. Evaluate the right-hand side to a value
2. Store that value in the variable

x = 2
print(x)
y = x
print(y)
z = x + 1
print(z)
x = 5
print(x)
print(y)
print(z)

State of the computer: Printed output:

2
2
3
5
2
3

x: 2
y: 2
z: 3

x: 5

To visualize a program’s execution:
http://pythontutor.com

32

http://people.csail.mit.edu/pgbovine/python/tutor.html

More Expressions: Conditionals
(value is True or False)
22 > 4 # condition, or conditional
22 < 4 # condition, or conditional
22 == 4 …
x = 100 # Assignment, not conditional!
22 = 4 # Error!
x >= 5
x >= 100
x >= 200
not True
not (x >= 200)
3<4 and 5<6
4<3 or 5<6
temp = 72
water_is_liquid = (temp > 32 and temp < 212)

Numeric operators: +, *, **
Boolean operators: not, and, or
Mixed operators: <, >=, ==

33

More Expressions: strings
• A string represents text

– 'Python'
– myString = "BBM 101-Introduction to Programming"
– ""

• Empty string is not the same as an unbound variable
– "" and ‘’ are the same

• We can specify tab, newline, backslash, and single quote characters using
escape sequences ’\t’, ’\n’, ’\\’, and ’\’’, respectively

Operations:
• Length:

– len(myString)

• Concatenation:
– "Hacettepe" + " " + ' University'

• Containment/searching:
– 'a' in myString
– "a" in myString 34

Strings
ruler1 = '1'
ruler2 = ruler1 + ' 2 ' + ruler1
ruler3 = ruler2 + ' 3 ' + ruler2
ruler4 = ruler3 + ' 4 ' + ruler3
print(ruler1)
print(ruler2)
print(ruler3)
print(ruler4)

35

1
1 2 1
1 2 1 3 1 2 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

3. Different Types cannot be Compared

36

anInt = 2
aString = "Hacettepe"
anInt == aString # Error

Types of Values

• Integers (int): -22, 0, 44
– Arithmetic is exact
– Some funny representations: 12345678901L

• Real numbers (float, for “floating point”): 2.718,
3.1415
– Arithmetic is approximate, e.g., 6.022*10**23

• Strings (str): "I love Python", " "

• Truth values (bool, for “Boolean”):
True, False

George Boole
37

Operations Behave differently
on Different Types
3.0 + 4.0
3 + 4
3 + 4.0
"3" + "4" # Concatenation
3 + "4" # Error
3 + True # Error

Moral: Python only sometimes tells you when you
do something that does not make sense.

38

Operations on Different Types

15.0 / 4.0 3.75 3.75
15 / 4 3.75 3
15.0 / 4 3.75 3.75
15 / 4.0 3.75 3.75

15.0 // 4.0 3.0
15 // 4 3
15.0 // 4 3.0
15 // 4.0 3.0

39

Before Python version 3.5,
operand used to determine
the type of division.

Python 3.5 Python 2.x

/ : Division
//: Integer Division

Type Conversion

float(15) 15.0
int(15.0) 15
int(15.5) 15
int("15") 15
str(15.5) 15.5
float(15) / 4 3.75

40

A Program is a Recipe

41

Design the Algorithm Before Coding
• We should think (design the algorithm) before coding

• Algorithmic thinking is the logic. Also, called problem
solving

• Coding is the syntax

• Make this a habit

• Some students do not follow this practice and they get
challenged in all their courses and careers!

42

What is a Program?
• A program is a sequence of instructions

• The computer executes one after the other, as if they had been
typed to the interpreter

• Saving your work as a program is better than re-typing from
scratch

43

x = 1
y = 2
x + y
print(x + y)
print("The sum of", x, "and", y, "is", x+y)

The print() Statement

• The print statement always prints one line
– The next print statement prints below that one

• Write 0 or more expressions after print, separated by commas
– In the output, the values are separated by spaces

• Examples:
x = 1
y = 2
print(3.1415)
print(2.718, 1.618)
print()
print(20 + 2, 7 * 3, 4 * 5)
print("The sum of", x, end="")
print(" and", y, "is", x+y)

44

3.1415
2.718 1.618

22 21 20
The sum of 1 and 2 is 3

To avoid newline

Exercise: Convert Temperatures
• Make a temperature conversion chart as the following

• Fahrenheit to Centigrade, for Fahrenheit values of: -40, 0, 32, 68, 98.6, 212

• C = (F - 32) × 5/9

• Output:
Fahrenheit Centigrade
-40 -40.0
0 -17.7778
32 0.0
68 20.0
98.6 37.0
212 100.0

• You have created a Python program!

• (It doesn’t have to be this tedious, and it won’t be.)

45

Expressions, Statements, and Programs
• An expression evaluates to a value

3 + 4
pi * r**2

• A statement causes an effect
pi = 3.14159
print(pi)

• Expressions appear within other expressions and within statements
(fahr – 32) * (5.0 / 9)
print(pi * r**2)

• A statement may not appear within an expression
3 + print(pi) # Error!

• A program is made up of statements
– A program should do something or communicate information 46

1. Python is like a calculator 2. A variable is a container

4. A program is a recipe3. Different types cannot be compared

47

Programming Languages
• A programming language is a “language” to write programs in,

such as Python, C, C++, Java

• The concept of programming languages are quite similar

• Python:

• Java:

• Python is simpler! That’s why we are learning it first J

48

print("Hello, World!")

public static void main(String[] args) {
System.out.println("Hello, World!");

}

Evolution of Programming Languages

49

The 2017 Top Programming Languages

• https://spectrum.ieee.org/at-work/innovation/the-2018-top-
programming-languages 50

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

51

ht
tp
://

ca
rlc
he

o.
co
m
/s
ta
rt
co
di
ng

http://carlcheo.com/startcoding

