B'BM 101
Introductien to Programming
\qquad

$$
\begin{array}{r}
4 \\
\hline 153
\end{array}
$$

Lecture\#09-Developnientatidegjes

Last time... Testing, debugging, exceptions

Exceptions

Debugging

Lecture Overview

- How to develop a program
- Algorithmic Complexity

Lecture Overview

- How to develop a program
- Algorithmic Complexity

Program development methodology: Algorithm first, then Python

1. Define the problem
2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

Program development methodology: Algorithm first, then Python

1. Define the problem

A. Write an Natural Language description of the input and output for the whole program. (Do not give details about how you will compute the output.)
B. Create test cases for the whole program

- Input and expected output

2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

Program development methodology: Algorithm first, then Python

1. Define the problem
2. Decide upon an algorithm
A. Implement it in Algorithmic way (e.g. in English)

- Write the recipe Or step-by-step instructions
B. Test it using paper and pencil
- Use small but not trivial test cases
- Play computer, animating the algorithm
- Be introspective
- Notice what you really do
- May be more or less than what you wrote down
- Make the algorithm more precise

3. Translate it into code

Try to do these steps in order

Program development methodology: Algorithm first, then Python

1. Define the problem
2. Decide upon an algorithm
3. Translate it into code
A. Implement it in Python

- Decompose it into logical units (functions)
- For each function:
- Name it (important and difficult!)
- Write its documentation string (its specification)
- Write tests
- Write its code
- Test the function
B. Test the whole program

Try to do these steps in order

Program development methodology: Algorithm first, then Python

1. Define the problem
2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

- It's OK (even common) to back up to a previous step when you notice a problem
- You are incrementally learning about the problem, the algorithm, and the code
- "Iterative development"

Waterfall Development Strategy

- Before the iterative model, we had the waterfall strategy.
- Each step handled once.
-The model had a limited capability and recieved too many criticism.
- Better than nothing!!
- Do not dive in to code!!
- Please!!

Iterative Development Strategy

- Software developement is a living process.
- Pure waterfall model wasn't enough.
- Iterative developement strategy suits best to our needs (for now).

* From wikipedia Iterative development model

Iterative Development Strategy -2-

Iterative Development
Business value is delivered incrementally in time-boxed cross-discipline iterations.

* From wikipedia Iterative development model

The Wishful Thinking approach to implementing a function

- If you are not sure how to implement one part of your function, define a helper function that does that task
-"I wish I knew how to do task X"
-Give it a name and assume that it works
-Go ahead and complete the implementation of your function, using the helper function (and assuming it works)
-Later, implement the helper function
-The helper function should have a simpler/smaller task

The Wishful Thinking approach to implementing a function

- Can you test the original function?
-Yes, by using a stub for the helper function
-Often a lookup table: works for only 5 inputs, crashes otherwise, or maybe just returns the same value every time

Why functions?

There are several reasons:

- Creating a new function gives you an opportunity to name a group of statements, which makes your program easier to read and debug.
- Functions can make a program smaller by eliminating repetitive code. Later, if you make a change, you only have to make it in one place.
- Dividing a long program into functions allows you to debug the parts one at a time and then assemble them into a working whole.
- Well-designed functions are often useful for many programs. Once you write and debug one, you can reuse it.

Lecture Overview

- How to develop a program
- Algorithmic Complexity

Measuring complexity

- Goals in designing programs

1. It returns the correct answer on all legal inputs
2. It performs the computation efficiently

- Typically (1) is most important, but sometimes (2) is also critical, e.g., programs for collision detection, avionic systems, drive assistance etc.
- Even when (1) is most important, it is valuable to understand and optimize (2)

Computational complexity

- How much time will it take a program to run?
-How much memory will it need to run?
- Need to balance minimizing computational complexity with conceptual complexity
-Keep code simple and easy to understand, but where possible optimize performance

How do we measure complexity?

- Given a function, would like to answer: "How long will this take to run?"
- Could just run on some input and time it.
- Problem is that this depends on:

1. Speed of computer
2. Specifics of Programming Language implementation
3. Value of input

- Avoid (1) and (2) by measuring time in terms of number of basic steps executed

Measuring basic steps

- Use a random access machine (RAM) as model of computation
- Steps are executed sequentially
- Step is an operation that takes constant time
- Assignment
- Comparison
- Arithmetic operation
- Accessing object in memory
- For point (3), measure time in terms of size of input

But complexity might depend on value of input?
def linearSearch (L, x):

```
for e in L:
    if e==x:
        return True
```

return False

- If x happens to be near front of L, then returns True almost immediately
- If x not in L, then code will have to examine all elements of L
- Need a general way of measuring

Cases for measuring complexity

- Best case: minimum running time over all possible inputs of a given size
- For linearSearch - constant, i.e. independent of size of inputs
- Worst case: maximum running time over all possible inputs of a given size
- For linearSearch - linear in size of list
- Average (or expected) case: average running time over all possible inputs of a given size
- We will focus on worst case - a kind of upper bound on running time

Example

def fact(n):
answer $=1$
while n > 1:
answer *= n
$\mathrm{n}-=1$
return answer

- Number of steps

1 (for assignment)
5* (1 for test, plus 2 for first assignment, plus 2 for second assignment in while;
repeated n <mes through while)
1 (for return)

- 5* $\mathrm{n}+2$ steps
- But as n gets large, 2 is irrelevant, so basically 5*n steps

Example

-What about the multiplicative constant (5 in this case)?

- We argue that in general, multiplicative constants are not relevant when comparing algorithms

Example

def sqrtExhaust(x, eps):

$$
\begin{aligned}
& \text { step }=\text { eps**2 } \\
& \text { ans }=0.0
\end{aligned}
$$

$$
\text { while abs (ans**2 - x) >= eps and ans }<=\max (x, 1) \text { : }
$$

$$
\text { ans }+=\text { step }
$$

return ans

- If we call this on 100 and 0.0001 , will take one billion iterations of the loop
-Have roughly 8 steps within each iteration

Example

```
def sqrtBi(x, eps):
    low \(=0.0\)
    high \(=\max (1, x)\)
    ans \(=\) (high + low)/2.0
    while abs(ans**2 - x) >= eps:
            if ans**2 < x:
            low = ans
        else:
            high = ans
            ans \(=(\) high + low) \(/ 2.0\)
    return ans
```

- If we call this on 100 and 0.0001 , will take thirty iterations of the loop
- Have roughly 10 steps within each iteration
- 1 billion or 8 billion versus 30 or 300 - it is size of problem that matters

Measuring complexity

- Given this difference in iterations through loop, multiplicative factor (number of steps within loop) probably irrelevant
- Thus, we will focus on measuring the complexity as a function of input size
-Will focus on the largest factor in this expression
-Will be mostly concerned with the worst case scenario

Asymptotic notation

- Need a formal way to talk about relationship between running time and size of inputs
- Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity

Example

def $f(x):$
for i in range (1000):
ans $=$ i
for i in range (x):
ans $+=1$
for i in range (x):
for j in range (x): ans $+=1$

Complexity is $1000+2 x+2 x^{2}$, if each line takes one step

Example

- $1000+2 x+2 x^{2}$
- If x is small, constant term dominates
- E.g., $x=10$ then 1000 of 1220 steps are in first loop
- If x is large, quadratic term dominates
- E.g. $x=1,000,000$, then first loop takes 0.000000005% of time, second loop takes 0.0001% of time (out of 2,000,002,001,000 steps)!

Example

- So really only need to consider the nested loops (quadratic component)
- Does it matter that this part takes $2 x^{2}$ steps, as opposed to say x^{2} steps?
-For our example, if our computer executes 100 million steps per second, difference is 5.5 hours versus 2.25 hours
-On the other hand if we can find a linear algorithm, this would run in a fraction of a second
-So multiplicative factors probably not crucial, but order of growth is crucial

Rules of thumb for complexity

- Asymptotic complexity
-Describe running time in terms of number of basic steps
-If running time is sum of multiple terms, keep one with the largest growth rate
-If remaining term is a product, drop any multiplicative constants
- Use "Big O" notation (aka Omicron)
- Gives an upper bound on asymptotic growth of a function

Complexity classes

- O(1) denotes constant running time
- O(log n) denotes logarithmic running time
- O(n) denotes linear running time
- O($n \log n$) denotes log-linear running time
- $\mathbf{O}\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $\mathbf{O}\left(\boldsymbol{c}^{n}\right.$) denotes exponential running time (c is a constant being raised to a power based on size of input)

Constant complexity

- Complexity independent of inputs
- Very few interesting algorithms in this class, but can often have pieces that fit this class
- Can have loops or recursive calls, but number of iterations or calls independent of size of input

Logarithmic complexity

- Complexity grows as log of size of one of its inputs
- Example:
- Bisection search
- Binary search of a list

Logarithmic complexity

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False
while first<=last and not found:
midpoint $=$ (first + last)//2
if alist[midpoint] == item:
found $=$ True
elif item < alist[midpoint]: last = midpoint-1
else:
first = midpoint+1
return found

Logarithmic complexity

```
def binarySearch(alist, item):
    first = 0
    last = len(alist)-1
    found = False
```

 while first<=last and not found:
 midpoint \(=\) (first + last)//2
 if alist[midpoint] == item:
 found \(=\) True
 elif item < alist[midpoint]:
 last \(=\) midpoint -1
 else:
 first \(=\) midpoint+1
 - Only have to look at loop as no function calls
- Within while loop constant number of steps
- How many times through loop?
- How many times can one divide indexes to find midpoint?
- O(log(len(alist)))

Linear complexity

- Searching a list in order to see if an element is present
- Add characters of a string, assumed to be composed of decimal digits

```
def addDigits(s):
val = 0
for c in s:
        val += int(c)
return val
```

- O(len(s))

Linear complexity

- Complexity can depend on number of recursive calls

```
def fact(n):
    if n == 1:
    return 1
    else:
    return n*fact(n-1)
```

- Number of recursive calls?
- Fact(n), then fact(n-1), etc. until get to fact(1)
- Complexity of each call is constant
- O(n)

Log-linear complexity

- Many practical algorithms are log-linear
- Very commonly used log-linear algorithm is merge sort
- Will return to this

Polynomial complexity

- Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- Commonly occurs when we have nested loops or recursive function calls

Quadratic complexity

def isSubset(L1, L2):
for e1 in L1:
matched = False
for e2 in L2:
if e1 == e2: matched $=$ True break
if not matched:
return False
return True

Quadratic complexity

```
def isSubset(L1, L2):
    for el in L1:
        matched = False
        for e2 in L2:
        if e1 == e2:
            matched = True
            break
        if not matched:
        return False
    return True
```

- Outer loop executed len(L1) times
- Each iteration will execute inner loop up to len(L2) times
- O(len(L1)*len(L2))
- Worst case when L1 and L2 same length, none of elements of L1 in L2
- O(len(L1)²)

Quadratic complexity

Find intersection of two lists, return a list with each element appearing only once

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
        if e1 == e2:
        tmp.append (e1)
    res = []
    for e in tmp:
        if not(e in res):
        res.append (e)
    return res
```


Quadratic complexity

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
        if e1 == e2:
        tmp.append (e1)
    res = []
    for e in tmp:
        if not(e in res):
        res.append (e)
    return res
```

- First nested loop takes len(L1)*len(L2) steps
- Second loop takes at most len(L1) steps
- Latter term overwhelmed by former term
- O(len(L1)*len(L2))

Exponential complexity

- Recursive functions where more than one recursive call for each size of problem
- Towers of Hanoi
- Fibonacci series
- Many important problems are inherently exponential
- Unfortunate, as cost can be high
- Will lead us to consider approximate solutions more quickly

Exponential Complexity

def fib(N):
if $N==1$ or $N=0$:
return N
else:

$$
\text { return fib }(\mathrm{N}-1)+\text { fib }(\mathrm{N}-2)
$$

Exponential Complexity

```
def fib(N):
    if N == 1 or N == 0:
        return N
    else:
        return fib(N-1) + fib(N-2)
```

- Assuming return statement is constant time
- Recall the recursive tree.
- Complexity of this function is $\mathrm{O}\left(\sim 2^{\mathrm{n}}\right)$

Factorial Complexity

-The travelling salesperson problem.

- A salesperson has to visit n towns. Each pair of towns is joined by a route of a given length. Find the shortest possible route that visits all the towns and returns to the starting point.

1. Consider city 1 as the starting and ending point.
2. Generate all ($n-1$)! Permutations of cities.
3. Calculate cost of every permutation and keep track of minimum cost permutation.
4. Return the permutation with minimum cost.

Complexity classes

- O(1) denotes constant running time
- O(log n) denotes logarithmic running time
- O(n) denotes linear running time
- O($n \log n$) denotes log-linear running time
- $\mathbf{O}\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $\mathbf{O}\left(\boldsymbol{c}^{n}\right.$) denotes exponential running time (c is a constant being raised to a power based on size of input)
- $\mathbf{O}(n!)$ denotes factorial running time

Comparing complexities

- So does it really matter if our code is of a particular class of complexity?
- Depends on size of problem, but for large scale problems, complexity of worst case makes a difference

Comparing complexities - example

- There are alternative approaches with differing algorithm comlexities for doing sth. on a list of n elements.
- Now you want to compare them. Assume that computer makes three billion calculations per second. Lets look for the running time of the algorithms.

Complexity	$n=10$	$n=1000$	$n=10^{\wedge} 5$	$n=10^{\wedge 10}$
$\mathrm{O}(\operatorname{logn})$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$
$\mathrm{O}(\mathrm{n})$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{~min}$
$\mathrm{O}(\mathrm{nlogn})$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{sec}$	$<2 \mathrm{~min}$
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$<1 \mathrm{msec}$	$<1 \mathrm{msec}$	$<1 \mathrm{~min}$	~ 1000 year
$\mathrm{O}\left(2^{n}\right)$	$<1 \mathrm{sec}$	<1000 year	<1000 year	<1000 year
$\mathrm{O}(\mathrm{n}!)$	$<1 \mathrm{sec}$	<1000 year	>1000 year	>1000 year

Comparing the Complexities

Big-O Complexity Chart

Horrible Bad Fair Good Excellent

Constant versus Logarithmic

Observations

- A logarithmic algorithm is often almost as good as a constant time algorithm
- Logarithmic costs grow very slowly

Logarithmic versus Linear

Log vs. Linear

Observations

- Logarithmic clearly better for large scale problems than linear
- Does not imply linear is bad, however

Linear versus Log-linear

Linear vs. Log-linear

Observations

- While $\log (n)$ may grow slowly, when multiplied by a linear factor, growth is much more rapid than pure linear
- $O(n \log n)$ algorithms are still very valuable.

Log-linear versus Quadratic

Observations

- Quadratic is often a problem, however.
- Some problems inherently quadratic but if possible always better to look for more efficient solutions

Quadratic versus Exponential

- Exponential algorithms very expensive
- Right plot is on a log scale, since left plot almost invisible given how rapidly exponential grows
- Exponential generally not of use except for small problems

Warning

- Execution time and the algorithm complexity are different paradigms.
- Running time may differ even if two algorithms have the same algorithm complexity. (Even when their purpose are same)

```
def factIT(n):
    answer = 1
    while n > 0:
        answer *= n
        n -= 1
```

def fact $R E C(n):$
if $n==0:$
return 1
else:
return $n * f a c t R E C(n-1)$
return answer

They have same complexity $O(n)$. But their execution times are different.

Tips

- We know that, $\mathrm{O}\left(2^{n}\right)$ algorithm complexity is bad. But, if we sure that n won't be up too high, it won't be matter.
- When we calculate the big-O, we did not care about constant factors.
- $5 \mathrm{n}+37$-> O(n)
- But, sometimes improving the constants does matter. (e.g. in game developement; actually, everytime)
$-5 n+37 \rightarrow 5 n+10$ (not worthy, but better than nothing)
$-5 n+37 \rightarrow 3 n+12$ (better)

