
Lecture #09 – Development Strategies,
Algorithmic Speed

Aykut Erdem, Fuat Akal & Aydın Kaya // Fall 2018

BBM 101
Introduction to
Programming I

Still image from YouTube video P vs. NP and the Computational Complexity Zoo

https://www.youtube.com/watch?v=YX40hbAHx3s

Last time… Testing, debugging, exceptions

Debugging

Exceptions

2

try:
.....
.....

except:
.....

finally:
.....

Lecture Overview

•How to develop a program

•Algorithmic Complexity

2

Slides based on material prepared by Ruth Anderson, Michael Ernst and Bill Howe in the course CSE 140
University of Washington

Lecture Overview

•How to develop a program

•Algorithmic Complexity

2

Program development methodology:
Algorithm first, then Python

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

5

Program development methodology:
Algorithm first, then Python

1. Define the problem
A. Write an Natural Language description of the input

and output for the whole program. (Do not give
details about how you will compute the output.)

B. Create test cases for the whole program
• Input and expected output

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

6

Program development methodology:
Algorithm first, then Python

1. Define the problem
2. Decide upon an algorithm

A. Implement it in Algorithmic way (e.g. in English)
• Write the recipe or step-by-step instructions

B. Test it using paper and pencil
• Use small but not trivial test cases
• Play computer, animating the algorithm
• Be introspective

• Notice what you really do
• May be more or less than what you wrote down
• Make the algorithm more precise

3. Translate it into code

Try to do these steps in order

7

Program development methodology:
Algorithm first, then Python
1. Define the problem

2. Decide upon an algorithm

3. Translate it into code
A. Implement it in Python

• Decompose it into logical units (functions)

• For each function:
• Name it (important and difficult!)

• Write its documentation string (its specification)

• Write tests

• Write its code

• Test the function

B. Test the whole program

Try to do these steps in order
8

Program development methodology:
Algorithm first, then Python

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order
• It’s OK (even common) to back up to a previous step

when you notice a problem
• You are incrementally learning about the problem, the

algorithm, and the code
• “Iterative development”

9

Waterfall Development Strategy

•Before the iterative
model, we had the
waterfall strategy.

•Each step handled once.

•The model had a limited
capability and recieved
too many criticism.

•Better than nothing!!

•Do not dive in to code!!

•Please!!

* From wikipedia waterfall development model

Iterative Development Strategy

11
* From wikipedia Iterative development model

• Software
developement is a
living process.

• Pure waterfall model
wasn’t enough.

• Iterative
developement
strategy suits best to
our needs (for now).

Iterative Development Strategy -2-

12
* From wikipedia Iterative development model

The Wishful Thinking approach
to implementing a function

• If you are not sure how to implement one part of your
function, define a helper function that does that task
−“I wish I knew how to do task X”
−Give it a name and assume that it works
−Go ahead and complete the implementation of your

function, using the helper function (and assuming it works)
−Later, implement the helper function
−The helper function should have a simpler/smaller task

13

•Can you test the original function?
−Yes, by using a stub for the helper function
−Often a lookup table: works for only 5 inputs, crashes

otherwise, or maybe just returns the same value every time

14

The Wishful Thinking approach
to implementing a function

Why functions?

There are several reasons:

• Creating a new function gives you an opportunity to name a

group of statements, which makes your program easier to

read and debug.

• Functions can make a program smaller by eliminating

repetitive code. Later, if you make a change, you only have

to make it in one place.

• Dividing a long program into functions allows you to debug

the parts one at a time and then assemble them into a

working whole.

• Well-designed functions are often useful for many programs.

Once you write and debug one, you can reuse it.

15

Lecture Overview

•How to develop a program

•Algorithmic Complexity

2

Measuring complexity

• Goals in designing programs
1. It returns the correct answer on all legal inputs

2. It performs the computation efficiently

• Typically (1) is most important, but sometimes (2) is also
critical, e.g., programs for collision detection, avionic
systems, drive assistance etc.

• Even when (1) is most important, it is valuable to understand
and optimize (2)

17

Computational complexity

•How much time will it take a program to run?

•How much memory will it need to run?

•Need to balance minimizing computational
complexity with conceptual complexity
−Keep code simple and easy to understand, but where

possible optimize performance

18

How do we measure complexity?

•Given a function, would like to answer: “How long
will this take to run?”

•Could just run on some input and time it.

•Problem is that this depends on:
1. Speed of computer
2. Specifics of Programming Language implementation
3. Value of input

•Avoid (1) and (2) by measuring time in terms of
number of basic steps executed

19

Measuring basic steps

•Use a random access machine (RAM) as model of
computation
• Steps are executed sequentially
• Step is an operation that takes constant time

• Assignment

• Comparison

• Arithmetic operation

• Accessing object in memory

•For point (3), measure time in terms of size of input

20

But complexity might depend on
value of input?

def linearSearch(L, x):

for e in L:

if e==x:
return True

return False

• If x happens to be near front of L, then returns True
almost immediately

• If x not in L, then code will have to examine all elements
of L

•Need a general way of measuring

21

Cases for measuring complexity

•Best case: minimum running time over all possible
inputs of a given size
• For linearSearch – constant, i.e. independent of size of

inputs

•Worst case: maximum running time over all
possible inputs of a given size
• For linearSearch – linear in size of list

•Average (or expected) case: average running time
over all possible inputs of a given size

•We will focus on worst case – a kind of upper
bound on running time

22

Example

•Number of steps
1 (for assignment)
5*n (1 for test, plus 2 for first
assignment, plus 2 for second
assignment in while;
repeated n <mes through
while)
1 (for return)

•5*n+2steps
•But as n gets large, 2 is

irrelevant, so basically 5*n
steps

23

def fact(n):

answer = 1

while n > 1:

answer *= n

n -= 1

return answer

Example

•What about the multiplicative constant
(5 in this case)?

•We argue that in general, multiplicative constants
are not relevant when comparing algorithms

24

Example
def sqrtExhaust(x, eps):

step = eps**2

ans = 0.0

while abs(ans**2 - x) >= eps and ans <= max(x, 1):

ans += step

return ans

• If we call this on 100 and 0.0001, will take one billion
iterations of the loop
−Have roughly 8 steps within each iteration

25

Example

def sqrtBi(x, eps):

low = 0.0

high = max(1, x)

ans = (high + low)/2.0

while abs(ans**2 - x) >= eps:

if ans**2 < x:

low = ans

else:

high = ans

ans = (high + low)/2.0

return ans

• If we call this on 100 and 0.0001, will take thirty iterations of
the loop
−Have roughly 10 steps within each iteration

• 1 billion or 8 billion versus 30 or 300 – it is size of problem that
matters

26

Measuring complexity

•Given this difference in iterations through loop,
multiplicative factor (number of steps within loop)
probably irrelevant

•Thus, we will focus on measuring the complexity as
a function of input size
−Will focus on the largest factor in this expression
−Will be mostly concerned with the worst case scenario

27

Asymptotic notation

•Need a formal way to talk about relationship
between running time and size of inputs

•Mostly interested in what happens as size of inputs
gets very large, i.e. approaches infinity

28

Example

def f(x):

for i in range(1000):

ans = i

for i in range(x):

ans += 1

for i in range(x):

for j in range(x):

ans += 1

Complexity is 1000 + 2x + 2x2, if each line takes one step

29

Example

•1000+2x+2x2

• If x is small, constant term dominates
• E.g., x = 10 then 1000 of 1220 steps are in first loop

• If x is large, quadratic term dominates
• E.g. x = 1,000,000, then first loop takes 0.000000005% of

time, second loop takes 0.0001% of time (out of
2,000,002,001,000 steps)!

30

Example

•So really only need to consider the nested loops
(quadratic component)

•Does it matter that this part takes 2x2 steps, as
opposed to say x2 steps?
−For our example, if our computer executes 100 million

steps per second, difference is 5.5 hours versus 2.25
hours
−On the other hand if we can find a linear algorithm, this

would run in a fraction of a second
−So multiplicative factors probably not crucial, but order of

growth is crucial

31

Rules of thumb for complexity

•Asymptotic complexity
−Describe running time in terms of number of basic steps
−If running time is sum of multiple terms, keep one with

the largest growth rate
−If remaining term is a product, drop any multiplicative

constants

•Use “Big O” notation (aka Omicron)
• Gives an upper bound on asymptotic growth of a function

32

Complexity classes

•O(1) denotes constant running time

•O(log n) denotes logarithmic running time

•O(n) denotes linear running time

•O(n log n) denotes log-linear running time

•O(nc) denotes polynomial running time (c is a constant)

•O(cn) denotes exponential running time (c is a constant
being raised to a power based on size of input)

33

Constant complexity

•Complexity independent of inputs

•Very few interesting algorithms in this class, but can
often have pieces that fit this class

•Can have loops or recursive calls, but number of
iterations or calls independent of size of input

34

Logarithmic complexity

•Complexity grows as log of size of one of its inputs

•Example:
-Bisection search
-Binary search of a list

35

Logarithmic complexity

36

def binarySearch(alist, item):

first = 0

last = len(alist)-1

found = False

while first<=last and not found:

midpoint = (first + last)//2

if alist[midpoint] == item:

found = True

elif item < alist[midpoint]:

last = midpoint-1

else:

first = midpoint+1

return found

Logarithmic complexity

• Only have to look at loop
as no function calls

• Within while loop
constant number of steps

• How many times through
loop?
- How many times can one

divide indexes to find
midpoint?

- O(log(len(alist)))

37

def binarySearch(alist, item):

first = 0

last = len(alist)-1

found = False

while first<=last and not found:

midpoint = (first + last)//2

if alist[midpoint] == item:

found = True

elif item < alist[midpoint]:

last = midpoint-1

else:

first = midpoint+1

return found

Linear complexity

•Searching a list in order to see if an element is present

•Add characters of a string, assumed to be composed
of decimal digits

def addDigits(s):

val = 0

for c in s:

val += int(c)

return val

•O(len(s))

38

Linear complexity

•Complexity can depend on number of recursive calls

def fact(n):

if n == 1:

return 1

else:

return n*fact(n-1)

•Number of recursive calls?
- Fact(n), then fact(n-1), etc. until get to fact(1)
-Complexity of each call is constant
-O(n)

39

Log-linear complexity

•Many practical algorithms are log-linear

•Very commonly used log-linear algorithm is merge
sort

•Will return to this

40

Polynomial complexity

•Most common polynomial algorithms are quadratic,
i.e., complexity grows with square of size of input

•Commonly occurs when we have nested loops or
recursive function calls

41

Quadratic complexity

42

def isSubset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Quadratic complexity

•Outer loop executed
len(L1) times

• Each iteration will
execute inner loop up to
len(L2) times

•O(len(L1)*len(L2))

•Worst case when L1 and
L2 same length, none of
elements of L1 in L2

•O(len(L1)2)

43

def isSubset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Quadratic complexity

Find intersection of two lists, return a list with each
element appearing only once

44

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

res = []

for e in tmp:

if not(e in res):

res.append(e)

return res

Quadratic complexity

• First nested loop takes
len(L1)*len(L2) steps

• Second loop takes at
most len(L1) steps

• Latter term
overwhelmed by
former term

•O(len(L1)*len(L2))

45

def intersect(L1, L2):

tmp = []

for e1 in L1:

for e2 in L2:

if e1 == e2:

tmp.append(e1)

res = []

for e in tmp:

if not(e in res):

res.append(e)

return res

Exponential complexity

•Recursive functions where more than one recursive
call for each size of problem
• Towers of Hanoi
• Fibonacci series

•Many important problems are inherently
exponential
• Unfortunate, as cost can be high
• Will lead us to consider approximate solutions more

quickly

46

Exponential Complexity

47

def fib(N):

if N == 1 or N == 0:

return N

else:

return fib(N-1) + fib(N-2)

Exponential Complexity

48

def fib(N):

if N == 1 or N == 0:

return N

else:

return fib(N-1) + fib(N-2)

• Assuming return
statement is
constant time

• Recall the recursive
tree.

• Complexity of this
function is O(~2n)

Factorial Complexity

•The travelling salesperson problem.

•A salesperson has to visit n towns. Each pair of
towns is joined by a route of a given length. Find
the shortest possible route that visits all the towns
and returns to the starting point.

49

1. Consider city 1 as the starting and
ending point.

2. Generate all (n-1)! Permutations of
cities.

3. Calculate cost of every permutation
and keep track of minimum cost
permutation.

4. Return the permutation with
minimum cost.

Complexity classes

•O(1) denotes constant running time

•O(log n) denotes logarithmic running time

•O(n) denotes linear running time

•O(n log n) denotes log-linear running time

•O(nc) denotes polynomial running time (c is a constant)

•O(cn) denotes exponential running time (c is a constant
being raised to a power based on size of input)

•O(n!) denotes factorial running time

50

Comparing complexities

•So does it really matter if our code is of a particular
class of complexity?

•Depends on size of problem, but for large scale
problems, complexity of worst case makes a
difference

51

Comparing complexities - example

52

• There are alternative approaches with differing algorithm comlexities for
doing sth. on a list of n elements.

• Now you want to compare them. Assume that computer makes three
billion calculations per second. Lets look for the running time of the
algorithms.

Complexity n=10 n=1000 n=10^5 n=10^10

O(logn) < 1msec < 1msec < 1msec < 1msec

O(n) < 1msec < 1msec < 1msec < 1 min

O(nlogn) < 1msec < 1msec < 1 sec < 2 min

O(n2) < 1msec < 1msec < 1 min ~1000 year

O(2n) < 1 sec <1000 year <1000 year <1000 year

O(n!) < 1 sec <1000 year >1000 year >1000 year

Comparing the Complexities

53

Constant versus Logarithmic

54

Constant*versus*logarithmic*

Observations

•A logarithmic algorithm is often almost as good as a
constant time algorithm

• Logarithmic costs grow very slowly

55

Logarithmic versus Linear

56

Logarithmic*versus*Linear*

Observations

• Logarithmic clearly better for large scale problems
than linear

•Does not imply linear is bad, however

57

Linear versus Log-linear

58

Linear*versus*LogFlinear*

Observations

•While log(n) may grow slowly, when multiplied by a
linear factor, growth is much more rapid than pure
linear

•O(n log n) algorithms are still very valuable.

59

Log-linear versus Quadratic

60

LogFlinear*versus*Quadra/ c*

Observations

•Quadratic is often a problem, however.

•Some problems inherently quadratic but if possible
always better to look for more efficient solutions

61

Quadratic versus Exponential

•Exponential algorithms very expensive
-Right plot is on a log scale, since left plot almost invisible

given how rapidly exponential grows

•Exponential generally not of use except for small
problems

62

Quadra/ c*versus*Exponen/ al*

• Exponen/ al*algorithms*very*expensive*

– Right*plot*is*on*a*log*scale,*since*leD*plot*almost*
invisible*given*how*rapidly*exponen/ al*grows*

• Exponen/ al*generally*not*of*use*except*for*
small*problems**

Warning

• Execution time and the algorithm complexity are different
paradigms.

• Running time may differ even if two algorithms have the
same algorithm complexity. (Even when their purpose are
same)

63

def factIT(n):

answer = 1

while n > 0:

answer *= n

n -= 1

return answer

def factREC(n):

if n == 0:

return 1

else:

return n*factREC(n-1)

They have same complexity O(n). But their execution times are
different.

Tips

•We know that, O(2n) algorithm complexity is bad.
But, if we sure that n won’t be up too high, it won’t
be matter.

•When we calculate the big-O, we did not care about
constant factors.
- 5n + 37 -> O(n)

•But, sometimes improving the constants does
matter. (e.g. in game developement; actually,
everytime)
- 5n+37  5n+10 (not worthy, but better than nothing)
- 5n+37  3n+12 (better)

64

