
Programming in

Hacettepe University

Computer Engineering Department

BBM103 Introduction to Programming Lab 1

Week 7

Fall 2019

WHAT IS RECURSION?

•Goal: simplify the problem by solving the same
problem for smaller input

• Solve problems by divide(decrease)-and-conquer

• Function calls itself (but not infinitely!)

• One or more base cases

ITERATION vs. RECURSION

•An ITERATIVE function is one that loops to repeat
some part of the code.

•A RECURSIVE function is one that calls itself again to
repeat the code.

Multiplication Example: ITERATIVE Solution

a*b is equal to “add a to itself b times”

def multiply_iterative(a, b):

result = 0

while b > 0:

result += a

b -= 1

return result

Iteration

a*b = a + a + a + a + … + a

b times

Multiplication Example: RECURSIVE Solution

a*b = a + a + a + a + … + a = a + a*(b-1)

def mult_recursive(a, b):

if b == 1:

return a

else:

return a + mult_recursive(a, b-1)

b times

b-1 times

Base case

Recursive
Step

Factorial Example: ITERATIVE Solution

n! = n*(n-1)*(n-2)*(n-3)* … * 1

def factorial_iterative(n):

result = 1

while n > 0:

result *= n

n -= 1

return result

Iteration

Factorial Example: RECURSIVE Solution

n! = n*(n-1)*(n-2)*(n-3)* … * 1

•Base Case: if n = 1 1! = 1

•Recursive step: n! = n * (n-1)!

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

Base case

Recursive
Step

ITERATION vs. RECURSION

• recursion may be simpler, more intuitive, and also
efficient and natural for a programmer.

•BUT! Recursion may not be efficient from the
computer’s point of view.

• Ex. Computing nth Fibonacci number recursively takes O(2n)
steps!

Output:
Please enter a number to print fibonacci numbers!4

3

Example: Fibonacci Numbers

The Fibonacci numbers are the numbers of the following sequence of integer values:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
The Fibonacci numbers are defined by:
Fn = Fn-1 + Fn-2

with F0 = 0 and F1 = 1

Output:

Example: Visualizing Recursion

Example: Computing Exponent

We can compute exponent in fewer steps if we use successive squaring. Lets look at the execution pattern now.

Output:

[[1, 2, [3, 4]], [5, 6], 7]

[1, 2, 3, 4, 5, 6, 7]

Example: Flatten a List

Lab Exercises

1. Write python programs

a) that find greatest element in the list whose elements are provided as command-line
arguments. (a.py)

[‘34’, ‘11’, ‘42’, ‘3’, ‘16’, ‘7’] -> 42

b) that return the level of depth of a nested list. (b.py)

[[‘1’,‘4’,‘7’],‘a’,[‘b’,[‘t’,[‘9’,‘1’,[‘u’,[‘8’],‘1’],‘9’],‘3’]],‘r’] -> 5

Note: Use recursive functions in both programs.

