Intre eutilon tó Pros, an minge

Lecture \#06 - Recursion

Last time... Testing, debugging, exceptions

Lecture Overview

- Notion of state in computation
- Recursion as a programming concept
- Mutual recursion
- Recursion tree
- Pitfalls of recursion

Disclaimer: Much of the material and slides for this lecture were borrowed from
-E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x,
—J. DeNero in CS 61A (Berkeley),
-T. Cortina in 15110 Principles of Computing (CMU)
—R. Sedgewick, K. Wayne and R. Dondero (Princeton)

Recursion

- Recursion is a programming concept whereby a function invokes itself.
- Recursion is typically used to solve problems that are decomposable into subproblems which are just like the original problem, but a step closer to being solved.

Computation

- All computation consists of chugging along from state to state to state ...
- There is a set of rules that tells us, given the current state, which state to go to next.

Arithmetic as Rewrite Rules

- $2+3+4$
- $5+4$
- 9
- Expression evaluation
- We stop when we reach a number

Functions as New Rules

def square(n):

```
return n * n
```

When we see: square (something)

Rewrite it as: something * something

Functions as Rewrite Rules

def square(n):

return n * n

- square (3)
- 3 * 3
- 9

Piecewise Functions

$f(n)= \begin{cases}1 & \text { if } n=1 \\ n-1 & \text { if } n>1\end{cases}$
f(4)
4-1
3

In Python

def $f(n)$:

$$
\begin{array}{r}
\text { if } \mathrm{n}==1: \\
\text { return } 1
\end{array}
$$

else:
return n - 1

This is just math, right?

- Difference between mathematical functions and computation functions.
- Computation functions must be effective.
- For example, we can define the square-root function as

$$
\sqrt{ } x=y \text { such that } y \geq 0 \text { and } y^{2}=x
$$

- This defines a valid mathematical function, but it doesn't tell us how to compute the square root of a given number.

Fancier Functions

def $f(n)$:
return $n+(n-1)$

Find $f(4)$

Fancier Functions

def $f(n)$:
return $n+(n-1)$
def $g(n)$:
return $n+f(n-1)$

Find $g(4)$

Fancier Functions

def $f(n)$:
return $n+(n-1)$
def $g(n)$:
return $n+f(n-1)$
def $h(n):$
return $n+h(n-1)$

Find h(4)

Recursion

def $h(n)$:
return $n+h(n-1)$

- h is a recursive function, because it is defined in terms of itself.

Definition

Recursion

- See: "Recursion".

Recursion

def $h(n)$:
return $n+h(n-1)$
h(4)
$4+h(3)$
$4+3+h(2)$
$4+3+2+h(1)$
$4+3+2+1+h(0)$
$4+3+2+1+0+h(-1)$
$4+3+2+1+0+-1+h(-2)$

Evaluating h leads to an infinite loop!

What you are thinking?

"Ok, recursion is bad. What's the big deal?"

Recursion

def $f(n)$:
if $n=1$:
return 1
else:
return $f(n-1)$

Find f (1)
Find $f(2)$
Find $f(3)$
Find $\mathrm{f}(100)$

Recursion

$\operatorname{def} f(n)$:
if $\mathrm{n}==1$:
return 1
else:
return $f(n-1)$
f(3)
$f(3-1)$
f(2)
$f(2-1)$
f(1)
1

Terminology

$\operatorname{def} f(n)$:
if $n=1$: return 1
else:
return $f(n-1)$
"Useful" recursive functions have:

- at least one recursive case
- at least one base case so that the computation terminates

Recursion

def $f(n)$:
if $\mathrm{n}=1$:
return 1
else:
return $f(n+1)$

Find $f(5)$
We have a base case and a recursive case. What's wrong?
The recursive case should call the function on a simpler input, bringing us closer and closer to the base case.

Recursion

def $f(n)$:
if $\mathrm{n}=0$:
return 0
else:
return $1+f(n-1)$

Find $f(0)$
Find $f(1)$
Find $f(2)$
Find $f(100)$

Recursion

$\operatorname{def} f(n)$:
if $n=0$:
return 0
else:
return $1+f(n-1)$
f(3)
$1+f(2)$
$1+1+f(1)$
$1+1+1+f(0)$
$1+1+1+0$
3

Iterative algorithms

- Looping constructs (e.g. while or for loops) lead naturally to iterative algorithms
- Can conceptualize as capturing computation in a set of "state variables" which update on each iteration through the loop

Iterative multiplication by successive additions

- Imagine we want to perform multiplication by successive additions:
- To multiply a by b, add a to itself b times
- State variables:
- i - iteration number; starts at b
- result - current value of computation; starts at 0
- Update rules
$-i \leftarrow i-1$; stop when 0
- result \leftarrow result + a

Multiplication by successive additions

def iterMul (a, b):
result $=0$
while $b>0$:
result += a
b $-=1$
return result

Recursive version

- An alternative is to think of this computation as:

$$
\begin{aligned}
a * b & =\underbrace{a+a+\ldots+a}_{b \text { copies }} \\
& =a+\underbrace{a+\ldots+a}_{b-1 \text { copies }} \\
& =a+\frac{a *(b-1)}{a+\ldots+{ }_{a}}
\end{aligned}
$$

Recursion

- This is an instance of a recursive algorithm
- Reduce a problem to a simpler (or smaller) version of the same problem, plus some simple computations [Recursive step]
- Keep reducing until reach a simple case that can be solved directly
[Base case]
- $a * b=a ;$ if $b=1$
(Base case)
- $a * b=a+a *(b-1) ;$ otherwise
(Recursive case)

Recursive Multiplication

def recurMul (a,b):
if $b=1:$
return a
else:
return $a+r e c u r M u l(a, b-1)$

Let's try it out

 def recurMul (a,b):if $b=1:$ return a else:
return a + recurMul (a,b-1)

Let's try it out

def recurMul (a,b):

$$
\text { if } b=1:
$$

return a
else:
return $a+$
recurMul (a,b-1)

recurMul $(2,3)$

Let's try it out

def recurMul (a,b):

$$
\text { if } b=1:
$$

return a
else:
return a +
recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

 def recurMul (a,b):$$
\text { if } b=1:
$$ return a else:

return a + recurMul (a,b-1)
recurMul $(2,3)$

Let's try it out

 def recurMul (a,b): if $b=1$: return a else:return a + recurMul (a,b-1)
recurMul $(2,3)$

The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def recurMul(a,b):
    if b == 1:
        return a
    else:
        return a + recurMul(a,b-1)
```


Inductive Reasoning

- How do we know that our recursive code will work?
- iterMul terminates because b is initially positive, and decrease by 1 each time around loop; thus must eventually become less than 1
- recurMul called with $b=1$ has no recursive call and stops
- recurMul called with $\mathrm{b}>1$ makes a recursive call with a smaller version of b; must eventually reach call with $\mathrm{b}=1$

Mathematical Induction

- To prove a statement indexed on integers is true for all values of n :
- Prove it is true when n is smallest value (e.g. $n=0$ or $n=1$)
- Then prove that if it is true for an arbitrary value of n, one can show that it must be true for $n+1$

Example

- $0+1+2+3+\ldots+n=(n(n+1)) / 2$
- Proof
- If $n=0$, then LHS is 0 and RHS is $0 * 1 / 2=0$, so true
- Assume true for some k, then need to show that
- $0+1+2+\ldots+k+(k+1)=((k+1)(k+2)) / 2$
- LHS is $k(k+1) / 2+(k+1)$ by assumption that property holds for problem of size k
- This becomes, by algebra, ((k+1)(k+2))/2
- Hence expression holds for all $\mathrm{n}>=0$

What does this have to do with code?

- Same logic applies
def recurMul (a, b):
if $b==1$:
return a
else: return $a+$ recurMul (a, b-1)
- Base case, we can show that recurMul must return correct answer
- For recursive case, we can assume that recurMul correctly returns an answer for problems of size smaller than b , then by the addition step, it must also return a correct answer for problem of size b
- Thus by induction, code correctly returns answer

Sum digits of a number

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last

\section*{Some Observations}
- Each recursive call to a function creates its own environment, with local scoping of variables
- Bindings for variable in each frame distinct, and not changed by recursive call
- Flow of control will pass back to earlier frame once function call returns value

\section*{The "classic" Recursive Problem}
- Factorial
\[
\begin{aligned}
& n!=n *(n-1) * \ldots * 1 \\
& n!= \begin{cases}1 & \text { if } n=0 \\
n *(n-1)! & \text { otherwise }\end{cases}
\end{aligned}
\]

\section*{Recursion in Environment Diagrams}
```

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)
fact(3)

```

\section*{Recursion in Environment Diagrams}
```

 def fact(n)
 if \(n==0:\)
 return 1
 else:
 return \(n^{*}\) fact(n-1)
 fact(3)
    ```
(Demo)
Global frame
fact
f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]


\section*{Recursion in Environment Diagrams}
```

 def fact(n):
 if \(n==0:\)
 return 1
 else:
 return \(n^{*}\) fact(\(n-1\))
 fact (3)
    ```
- The same function fact is called multiple times
(Demo)

f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0
Return
value

\section*{Recursion in Environment Diagrams}
```

 def fact(n):
 if \(n==0:\)
 return 1
 else:
 return \(n^{*}\) fact(\(n-1\))
 fact(3)
    ```
- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
(Demo)
```

Global frame

```
                            func fact(n) [parent=Global]
fact
f1: fact [parent=Global]
n 3
f2: fact [parent=Global]
n 2
f3: fact [parent=Global]
n 1
f4: fact [parent=Global]
n 0
Return 1
value

\section*{Recursion in Environment Diagrams}

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- What \(\mathbf{n}\) evaluates to depends upon the current environment

\section*{Recursion in Environment Diagrams}

- The same function fact is called multiple times
- Different frames keep track of different arguments in each call
- What \(\mathbf{n}\) evaluates to depends upon the current environment
- Each call to fact solves a simpler problem than the last: smaller \(\mathbf{n}\)

\section*{Iteration vs. Recursion}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

\title{
Iteration vs. Recursion
}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

Using while:
```

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+1
return total

```

Math:
\[
n!=\prod_{k=1}^{n} k
\]

Names: \(\quad n\), total, k, fact_iter

\section*{Iteration vs. Recursion}
\[
4!=4 \cdot 3 \cdot 2 \cdot 1=24
\]

Using while:
```

def fact_iter(n):
total, k = 1, 1
while k <= n:
total, k = total*k, k+1
return total

```

Math:
\[
n!=\prod_{k=1}^{n} k
\]

Using recursion:
```

def fact(n):
if n == 0:
return 1
else:
return n * fact(n-1)

```
\(n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}\)
n, fact

\section*{Recursion on Non-numerics}
- How could we check whether a string of characters is a palindrome, i.e., reads the same forwards and backwards
> - "Able was I ere I saw Elba" attributed to Napolean
- "Are we not drawn onward, we few, drawn onward to new era?"
- "Ey Edip Adana'da pide ye"

\section*{How to solve this recursively?}
- First, convert the string to just characters, by stripping out punctuation, and converting upper case to lower case
- Then
- a string of length 0 or 1 is a palindrome [Base case]
- If the first character matches the last character, then is a palindrome if middle section is a palindrome [Recursive case]

\section*{Example}
- "Able was I ere I saw Elba" \(\rightarrow\) "ablewasiereisawelba"
- isPalindrome("ablewasiereisawelba")
is same as
"a"=="a" and isPalindrome("blewasiereisawleb")

\section*{Palindrome or not?}
def toChars (s):
\[
s=s . \text { lower () }
\]
ans \(=\) ''
for \(c\) in \(s:\)
if \(c\) in 'abcdefghijklmnopqrstuvwxyz':
ans \(=a n s+c\)
return ans

\section*{Palindrome or not?}
def isPal(s):
if len(s) <= 1:
return True
else:
\[
\text { return } s[0]==s[-1] \text { and isPal (s[1:-1]) }
\]
def isPalindrome(s): return isPal(toChars(s))

\section*{Divide and Conquer}
- This is an example of a "divide and conquer" algorithm
- Solve a hard problem by breaking it into a set of sub-problems such that:
- Sub-problems are easier to solve than the original
- Solutions of the sub-problems can be combined to solve the original

\section*{Global Variables}
- Suppose we wanted to count the number of times fact calls itself recursively
- Can do this using a global variable
- So far, all functions communicate with their environment through their parameters and return values
- But, (though a bit dangerous), can declare a variable to be global - means name is defined at the outermost scope of the program, rather than scope of function in which appears

\section*{Example}
```

def factMetered(n):
global numCalls
numCalls += 1
if n == 0:
return 1
else:
return n * factMetered(n-1)
def testFac(n):
for i in range(n+1):
global numCalls
numCalls = 0
print('fac of ' +str(i) +' = ' + str(factMetered(i)))
print('fac called ' + str(numCalls) + ' times')

```
testFac (4)

\section*{Global Variables}
- Use with care!!
- Destroy locality of code
- Since can be modified or read in a wide range of places, can be easy to break locality and introduce bugs!!

\section*{Mutual Recursion}
- Mutual recursion is a form of recursion where two functions or data types are defined in terms of each other.

\section*{Mutual Recursion Example}
```

def even(n):
if n == 0:
return True
else:
return odd(n - 1)

```
def odd(n):
\[
\text { if } n=0 \text { : }
\]
return False
else:
return even (n - 1)
even (4)

\section*{The Luhn Algorithm}
- A simple checksum formula used to validate a variety of identification numbers, such as credit card numbers, IMEI numbers, etc.


\section*{The Luhn Algorithm}
- From Wikipedia: http://en.wikipedia.org/wiki/Luhn algorithm
- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., \(7 * 2=14\) ), then sum the digits of the products (e.g., 10: \(1+0=1,14: 1+\) \(4=5\) )
- Second: Take the sum of all the digits
\begin{tabular}{|l|l|c|c|c|c|}
\hline 1 & 3 & 8 & 7 & 4 & 3 \\
\hline 2 & 3 & \(1+6=7\) & 7 & 8 & 3 \\
\hline
\end{tabular}
- The Luhn sum of a valid credit card number is a multiple of 10

\section*{The Luhn Algorithm}
```

def luhn_sum(n):
"""Return the digit sum of n computed by the Luhn algorithm"""
if n< 10:
return n
else:
all_but_last, last = split(n)
return luhn_sum_double(all_but_last) + last
def luhn_sum_double(n):
"""Return the Luhn sum of n, doubling the last digit."""
all_but_last, last = split(n)
luhn_digit = sum_digits(2 * last)
if n< 10:
return luhn_digit
else:
return luhn_sum(all_but_last) + luhn_digit

```

\section*{Tree Recursion}
- Tree-shaped processes arise whenever executing the body of a recursive function makes more than one recursive call.

\section*{Tree Recursion}
- Fibonacci numbers
- Leonardo of Pisa (aka Fibonacci) modeled the following challenge
- Newborn pair of rabbits (one female, one male) are put in a pen
- Rabbits mate at age of one month
- Rabbits have a one month gestation period
- Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
- How many female rabbits are there at the end of one year?

\section*{Fibonacci}
- After one month (call it 0) - 1 female
- After second month - still 1 female (now pregnant)
- After third month - two females, one pregnant, one not
- In general, females( n ) = females( \(\mathrm{n}-1\) ) + females(n-2)
\begin{tabular}{|l|l|}
\hline Month & Females \\
\hline 0 & 1 \\
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline 3 & 3 \\
\hline 4 & 5 \\
\hline 5 & 8 \\
\hline 6 & 13 \\
\hline
\end{tabular}
- Every female alive at month \(n-2\) will produce one female in month \(n\);
- These can be added those alive in month \(n-1\) to get total alive in month \(n\)

\section*{Fibonacci}
- Base cases:
- Females(0) = 1
- Females(1) = 1
- Recursive case
- Females(n) \(=\) Females( \(\mathrm{n}-1\) ) + Females( n -2)

\section*{Fibonacci} def fib(n):
"""assumes n an int >= 0
returns Fibonacci of n"""
assert type ( \(n\) ) \(==\) int and \(n>=0\)
if \(\mathrm{n}=0\) :
return 1
elif \(\mathrm{n}=\mathbf{1}\) :
return 1
else:
return \(\mathrm{fib}(\mathrm{n}-2)+\mathrm{fib}(\mathrm{n}-1)\)

\section*{Tiling Squares}

Rewrite rule: Add square to long side.


\section*{Tiling Squares}

What is the side length of each square?

\section*{Tiling Squares}


Spiral


\section*{Fibonacci}
\(1 \div 1=1\)
\(2 \div 1=2\)
\(3 \div 2=1.5\)
\(5 \div 3=1.666 \ldots\)
\(8 \div 5=1.6\)
\(13 \div 8=1.625\)
\(21 \div 13=1.615 \ldots\)
\(34 \div 21=1.619 \ldots\)

\section*{Limit}

What is the limit of \(\frac{\mathrm{fib}(n)}{\mathrm{fib}(n-1)}\)
as n approaches infinity?
1.6180339887498948482...

What's that called?

\section*{The Golden Ratio}

The proportions of a rectangle that, when a square is added to it
results in a rectangle with the same proportions.


\section*{The Golden Ratio}


\section*{Fibonacci}
\(\operatorname{fib}(n)=\int 1 \quad n=1,2\) fib \((n-1)+f i b(n-2) \quad n>2\)
\(\operatorname{fib}(n)=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}\)

\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure

\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure fib(5)

\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure

fib(3)

\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure


\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure


\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure


\section*{Recursion Tree}
- The computational process of \(f i b\) evolves into a tree structure


\section*{Recursion Tree}
- The computational process of fib evolves into a tree structure
fib(5) 1 time
fib(4) 1 time
fib(3) 2 times

fib(2) 3 times

\section*{Pitfalls of Recursion}
- With recursion, you can compose compact and elegant programs that fail spectacularly at runtime.
- Missing base case
- No guarentee of convergence
- Excessive space requirements
- Excessive recomputation

\section*{Missing base case}
def \(H(n):\) return \(H(n-1)+1.0 / n\);
- This recursive function is supposed to compute Harmonic numbers, but is missing a base case.
- If you call this function, it will repeatedly call itself and never return.

\section*{No guarantee of convergence} def \(H(n):\)
```

if n == 1:
return 1.0
return H(n) + 1.0/n

```
- This recursive function will go into an infinite recursive loop if it is invoked with an argument \(n\) having any value other than 1.
- Another common problem is to include within a recursive function a recursive call to solve a subproblem that is not smaller.

\section*{Excessive space requirements}
- Python needs to keep track of each recursive call to implement the function abstraction as expected.
- If a function calls itself recursively an excessive number of times before returning, the space required by Python for this task may be prohibitive.
```

def H(n):
if n == 0:
return 0.0
return H(n-1) + 1.0/n

```
- This recursive function correctly computes the \(\mathrm{n}^{\text {th }}\) harmonic number.
- However, we cannot use it for large \(n\) because the recursive depth is proportional to \(n\), and this creates a StackOverflowError.

\section*{Excessive recomputation}
- A simple recursive program might require exponential time (unnecessarily), due to excessive recomputation.
- For example, \(f i b\) is called on the same argument multiple times


\section*{Recursive Graphics}
- Simple recursive drawing schemes can lead to pictures that are remarkably intricate - Fractals
- For example, an \(H\)-tree of order \(n\) is defined as follows:
- The base case is null for \(n=0\).
- The reduction step is to draw, within the unit square three lines in the shape of the letter H four H -trees of order \(n-1\).
- One connected to each tip of the H with the additional provisos that the H -trees of order \(n-1\) are centered in the four quadrants of the square, halved in size.


\section*{More recursive graphics}
- Sierpinski triangles

- Recursive trees
```

