B'リM 101
Introductien to NP Programming I

$$
51
$$

$$
\frac{\times 3}{153}
$$

Lecture \#12 - Algoritniníc speed

Last time... Understanding Data

Data science is the study of data.

Data scientist is part mathematician, part statistician, part computer scientist and part trend-spotter.

Machine Learning

2- NumPy matpl $\$$ lib

Lecture Overview

- Algorithmic Complexity

Computational complexity

- How much time will it take a program to run?
-How much memory will it need to run?
- Need to balance minimizing computational complexity with conceptual complexity
-Keep code simple and easy to understand, but where possible optimize performance

Measuring complexity

- Goals in designing programs

1. It returns the correct answer on all legal inputs
2. It performs the computation efficiently

- Typically (1) is most important, but sometimes (2) is also critical, e.g., programs for collision detection, avionic systems, drive assistance etc.
- Even when (1) is most important, it is valuable to understand and optimize (2)

How do we measure complexity?

- Given a function, would like to answer: "How long will this take to run?"
- Could just run on some input and time it.
- Problem is that this depends on:

1. Speed of computer
2. Specifics of Programming Language implementation
3. Value of input

- Avoid (1) and (2) by measuring time in terms of number of basic steps executed

Measuring basic steps

- Use a random access machine (RAM) as model of computation
- Steps are executed sequentially
- Step is an operation that takes constant time
- Assignment
- Comparison
- Arithmetic operation
- Accessing object in memory
- For point (3), measure time in terms of size of input

But complexity might depend on value of input?

def linearSearch (L, x):

```
for e in L:
    if e==x:
    return True
```

return False

- If x happens to be near front of L, then returns True almost immediately
- If x not in L, then code will have to examine all elements of L
- Need a general way of measuring

Cases for measuring complexity

- Best case: minimum running time over all possible inputs of a given size
- For linearSearch - constant, i.e. independent of size of inputs
- Worst case: maximum running time over all possible inputs of a given size
- For linearSearch - linear in size of list
- Average (or expected) case: average running time over all possible inputs of a given size
- We will focus on worst case - a kind of upper bound on running time

Example

def fact(n):
answer = 1 while $\mathrm{n}>0$:

$$
\begin{aligned}
& \text { answer } *=\mathrm{n} \\
& \mathrm{n}-=1
\end{aligned}
$$

return answer

- Number of steps

1 (for assignment)
5*n (1 for test, plus 2 for first assignment, plus 2 for second assignment in while;
repeated n times through while)
1 (for return)

- 5* $\mathrm{n}+2$ steps
- But as n gets large, 2 is irrelevant, so basically 5*n steps

Example

- What about the multiplicative constant (5 in this case)?
- We argue that in general, multiplicative constants are not relevant when comparing algorithms

Example

def sqrtExhaust(x, eps):

$$
\begin{aligned}
& \text { step }=\text { eps**2 } \\
& \text { ans }=0.0
\end{aligned}
$$

$$
\text { while abs (ans**2 - x) >= eps and ans <= max }(x, 1) \text { : }
$$

ans += step
return ans

- If we call this on 100 and 0.0001 , will take one billion iterations of the loop
-Have roughly 8 steps within each iteration

Example

```
def sqrtBi (x, eps) :
    low \(=0.0\)
    high \(=\max (1, x)\)
    ans \(=\) (high + low)/2.0
    while abs (ans**2 - x) >= eps:
        if ans**2 < x:
            low \(=\) ans
        else:
            high = ans
        ans \(=(\) high + low) \(/ 2.0\)
    return ans
```

- If we call this on 100 and 0.0001 , will take thirty iterations of the loop - Have roughly 10 steps within each iteration
- 1 billion or 8 billion versus 30 or 300 - it is size of problem that matters

Measuring complexity

- Given this difference in iterations through loop, multiplicative factor (number of steps within loop) probably irrelevant
- Thus, we will focus on measuring the complexity as a function of input size
-Will focus on the largest factor in this expression -Will be mostly concerned with the worst case scenario

Asymptotic notation

- Need a formal way to talk about relationship between running time and size of inputs
- Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity

Example

$\operatorname{def} \mathrm{f}(\mathrm{x}):$
for i in range (1000):
ans $=$ i
for i in range (x):
ans $+=1$
for i in range (x):
for j in range (x): ans $+=1$

Complexity is $1000+2 x+2 x^{2}$, if each line takes one step

Example

- $1000+2 x+2 x^{2}$
- If x is small, constant term dominates
- E.g., $x=10$ then 1000 of 1220 steps are in first loop
- If x is large, quadratic term dominates
- E.g. $x=1,000,000$, then first loop takes 0.000000005% of time, second loop takes 0.0001% of time (out of 2,000,002,001,000 steps)!

Example

- So really only need to consider the nested loops (quadratic component)
- Does it matter that this part takes $2 x^{2}$ steps, as opposed to say x^{2} steps?
-For our example, if our computer executes 100 million steps per second, difference is ~ 5.5 hours versus ~ 2.75 hours
-On the other hand if we can find a linear algorithm, this would run in a fraction of a second
-So multiplicative factors probably not crucial, but order of growth is crucial

Rules of thumb for complexity

- Asymptotic complexity
-Describe running time in terms of number of basic steps
-If running time is sum of multiple terms, keep one with the largest growth rate
-If remaining term is a product, drop any multiplicative constants
- Use "Big O" notation (aka Omicron)
- Gives an upper bound on asymptotic growth of a function

Complexity classes

- O(1) denotes constant running time
- O(log n) denotes logarithmic running time
- O(n) denotes linear running time
- O(n $\log n)$ denotes log-linear running time
- $\mathbf{O}\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $\mathbf{O}\left(\boldsymbol{c}^{n}\right.$) denotes exponential running time (c is a constant being raised to a power based on size of input)

Constant complexity

- Complexity independent of inputs
- Very few interesting algorithms in this class, but can often have pieces that fit this class
- Can have loops or recursive calls, but number of iterations or calls independent of size of input

Logarithmic complexity

- Complexity grows as log of size of one of its inputs
- Example:
- Bisection search
- Binary search of a list

Logarithmic complexity

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False
while first<=last and not found:
midpoint $=$ (first + last)//2
if alist[midpoint] == item:
found $=$ True
elif item < alist[midpoint]: last = midpoint-1
else:
first = midpoint+1
return found

Logarithmic complexity

```
def binarySearch(alist, item):
    first = 0
    last = len(alist)-1
    found = False
```

 while first<=last and not found:
 midpoint \(=\) (first + last)//2
 if alist[midpoint] == item:
 found \(=\) True
 elif item < alist[midpoint]:
 last = midpoint-1
 else:
 first \(=\) midpoint+1
 return found
 - Only have to look at loop as no function calls
- Within while loop constant number of steps
- How many times through loop?
- How many times can one divide indexes to find midpoint?
- O(log(len(alist)))

Linear complexity

- Searching a list in order to see if an element is present
- Add characters of a string, assumed to be composed of decimal digits

```
def addDigits(s):
val = 0
for c in s:
        val += int(c)
return val
```

- O(len(s))

Linear complexity

- Complexity can depend on number of recursive calls

```
def fact(n):
    if n == 1:
    return 1
    else:
    return n*fact(n-1)
```

- Number of recursive calls?
- Fact(n), then fact(n-1), etc. until get to fact(1)
- Complexity of each call is constant
- O(n)

Log-linear complexity

- Many practical algorithms are log-linear
- Very commonly used log-linear algorithm is merge sort

Polynomial complexity

- Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- Commonly occurs when we have nested loops or recursive function calls

Quadratic complexity

def isSubset(L1, L2):
for e1 in L1:
matched = False
for e2 in L2:
if e1 == e2:
matched $=$ True
break
if not matched:
return False
return True

Quadratic complexity

```
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
            matched = True
            break
    if not matched:
        return False
    return True
```

- Outer loop executed len(L1) times
- Each iteration will execute inner loop up to len(L2) times
- O(len(L1)*len(L2))
- Worst case when L1 and L2 same length, none of elements of L1 in L2
- O(len(L1)²)

Quadratic complexity

Find intersection of two lists, return a list with each element appearing only once

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
        if e1 == e2:
        tmp.append (e1)
    res = []
    for e in tmp:
        if not(e in res):
        res.append(e)
    return res
```


Quadratic complexity

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
        if e1 == e2:
                tmp.append (e1)
    res = []
    for e in tmp:
        if not(e in res):
        res.append(e)
    return res
```

- First nested loop takes len(L1)*len(L2) steps
- Second loop takes at most len(L1) steps
- Latter term overwhelmed by former term
- O(len(L1)*len(L2))

Exponential complexity

- Recursive functions where more than one recursive call for each size of problem
- Towers of Hanoi
- Fibonacci series
- Many important problems are inherently exponential
- Unfortunate, as cost can be high
- Will lead us to consider approximate solutions more quickly

Exponential Complexity

def fib(N):
if $\mathrm{N}=1$ or $\mathrm{N}==0$:
return N
else:

$$
\text { return fib }(\mathrm{N}-1)+\text { fib }(\mathrm{N}-2)
$$

Exponential Complexity

```
def fib(N):
    if N == 1 or N == 0:
        return N
    else:
        return fib(N-1) + fib(N-2)
```

- Assuming return statement is constant time
- Recall the recursive tree
- Complexity of this function is $O\left(\sim 2^{n}\right)$

Factorial Complexity

-The travelling salesperson problem.

- A salesperson has to visit n towns. Each pair of towns is joined by a route of a given length. Find the shortest possible route that visits all the towns and returns to the starting point.

1. Consider city 1 as the starting and ending point.
2. Generate all ($n-1$)! Permutations of cities.
3. Calculate cost of every permutation and keep track of minimum cost permutation.
4. Return the permutation with minimum cost.

Complexity classes

- O(1) denotes constant running time
- O(log n) denotes logarithmic running time
- O(n) denotes linear running time
- O($n \log n$) denotes log-linear running time
- $\mathbf{O}\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $\mathbf{O}\left(\boldsymbol{c}^{n}\right)$ denotes exponential running time (c is a constant being raised to a power based on size of input)
- $\mathbf{O}(n!)$ denotes factorial running time

Comparing complexities

- So does it really matter if our code is of a particular class of complexity?
- Depends on size of problem, but for large scale problems, complexity of worst case makes a difference

Comparing complexities - example

- There are alternative approaches with differing algorithm comlexities for doing something on a list of n elements.
- Now you want to compare them. Assume that computer makes three billion calculations per second. Lets look for the running time of the algorithms.

Complexity	$\mathrm{n}=10$	$\mathrm{n}=1000$	$\mathrm{n}=10^{\wedge} 5$	$\mathrm{n}=10^{\wedge 10}$
$\mathrm{O}(\operatorname{logn})$	<1msec	< 1msec	< 1msec	< 1 msec
$\mathrm{O}(\mathrm{n})$	< 1 msec	< 1 msec	< 1 msec	<1 min
O(nlogn)	<1msec	< 1 msec	< 1 sec	<2 min
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	< 1 msec	< 1 msec	< 1 min	~1000 year
$\mathrm{O}\left(2^{\mathrm{n}}\right)$	$<1 \mathrm{sec}$	<1000 year	<1000 year	<1000 year
$\mathrm{O}(\mathrm{n}!)$	< 1 sec	<1000 year	>1000 year	>1000 year

Comparing the Complexities

Big-O Complexity Chart

40 Horrible Bad Fair Good Excellent

Elements

Constant versus Logarithmic

Observations

- A logarithmic algorithm is often almost as good as a constant time algorithm
- Logarithmic costs grow very slowly

Logarithmic versus Linear

Observations

- Logarithmic clearly better for large scale problems than linear
- Does not imply linear is bad, however

Linear versus Log-linear

Linear vs. Log-linear

Observations

- While $\log (n)$ may grow slowly, when multiplied by a linear factor, growth is much more rapid than pure linear
- $O(n \log n)$ algorithms are still very valuable.

Log-linear versus Quadratic

Observations

- Quadratic is often a problem, however.
- Some problems inherently quadratic but if possible always better to look for more efficient solutions

Quadratic versus Exponential

- Exponential algorithms very expensive
- Right plot is on a log scale, since left plot almost invisible given how rapidly exponential grows
- Exponential generally not of use except for small problems

Warning

- Execution time and the algorithm complexity are different paradigms.
- Running time may differ even if two algorithms have the same algorithm complexity (Even when their purposes are the same).

```
def factIT(n):
    answer = 1
    while n > 0:
        answer *= n
        n -= 1
```

```
def factREC(n):
    if n == 0:
        return 1
    else:
        return n*factREC(n-1)
```

 return answer
 They have same complexity $O(n)$. But their execution times are different.

Tips

-We know that, $\mathrm{O}\left(2^{n}\right)$ algorithm complexity is bad. But, if we sure that n won't be up too high, it won't be matter.

- When we calculate the big-O, we did not care about constant factors.
$-5 n+37->0(n)$
- But, sometimes improving the constants does matter, e.g. in game development
$-5 n+37 \rightarrow 5 n+10$ (not worthy, but better than nothing)
$-5 n+37 \rightarrow 3 n+12$ (better)

