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Last time… Understanding Data
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Data science is the study of data. 

Data scientist is part mathematician, part 
statistician, part computer scientist and 
part trend-spotter. 

Machine Learning



Lecture Overview
•Algorithmic Complexity

2
Slides based on material prepared by E. Grimson, J. Guttag and C. Terman in MITx 6.00.1x



Computational complexity
•How much time will it take a program to run? 
•How much memory will it need to run?

•Need to balance minimizing computational  
complexity with conceptual complexity 
−Keep code simple and easy to understand, but where 

possible optimize performance 
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Measuring complexity
• Goals in designing programs

1. It returns the correct answer on all legal inputs 
2. It performs the computation efficiently

• Typically (1) is most important, but sometimes (2) is also 
critical, e.g., programs for collision detection, avionic 
systems, drive assistance etc.

• Even when (1) is most important, it is valuable to understand 
and optimize (2) 
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How do we measure complexity? 
•Given a function, would like to answer: “How long 

will this take to run?” 

•Could just run on some input and time it. 

•Problem is that this depends on: 
1. Speed of computer
2. Specifics of Programming Language implementation
3. Value of input 

•Avoid (1) and (2) by measuring time in terms of 
number of basic steps executed 
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Measuring basic steps 
•Use a random access machine (RAM) as model of 

computation 
• Steps are executed sequentially 
• Step is an operation that takes constant time
• Assignment 
• Comparison
• Arithmetic operation
• Accessing object in memory 

•For point (3), measure time in terms of size of input 
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But complexity might depend on 
value of input? 

def linearSearch(L, x): 
for e in L: 

if e==x: 
return True 

return False 

• If x happens to be near front of L, then returns True 
almost immediately 
• If x not in L, then code will have to examine all elements 

of L 
•Need a general way of measuring 

8



Cases for measuring complexity 
•Best case: minimum running time over all possible 

inputs of a given size 
• For linearSearch – constant, i.e. independent of size of 

inputs 

•Worst case: maximum running time over all 
possible inputs of a given size 
• For linearSearch – linear in size of list

•Average (or expected) case: average running time 
over all possible inputs of a given size 

•We will focus on worst case – a kind of upper 
bound on running time 
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Example

•Number of steps 
1 (for assignment) 
5*n (1 for test, plus 2 for first 
assignment, plus 2 for second 
assignment in while; 
repeated n times through 
while) 
1 (for return) 

•5*n+2steps 
•But as n gets large, 2 is 

irrelevant, so basically 5*n 
steps 
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def fact(n): 
answer = 1 
while n > 0: 

answer *= n 
n -= 1 

return answer 



Example
•What about the multiplicative constant 

(5 in this case)? 

•We argue that in general, multiplicative constants 
are not relevant when comparing algorithms 
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Example 
def sqrtExhaust(x, eps): 

step = eps**2 
ans = 0.0 
while abs(ans**2 - x) >= eps and ans <= max(x, 1): 

ans += step 

return ans

• If we call this on 100 and 0.0001, will take one billion 
iterations of the loop 
−Have roughly 8 steps within each iteration 
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Example
def sqrtBi(x, eps):

low = 0.0
high = max(1, x) 
ans = (high + low)/2.0 
while abs(ans**2 - x) >= eps: 

if ans**2 < x: 
low = ans

else: 
high = ans

ans = (high + low)/2.0 
return ans

• If we call this on 100 and 0.0001, will take thirty iterations of the loop
− Have roughly 10 steps within each iteration 

• 1 billion or 8 billion versus 30 or 300 – it is size of problem that matters 
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Measuring complexity 
•Given this difference in iterations through loop, 

multiplicative factor (number of steps within loop) 
probably irrelevant 

•Thus, we will focus on measuring the complexity as 
a function of input size 
−Will focus on the largest factor in this expression 
−Will be mostly concerned with the worst case scenario 
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Asymptotic notation
•Need a formal way to talk about relationship 

between running time and size of inputs

•Mostly interested in what happens as size of inputs 
gets very large, i.e. approaches infinity 
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Example

def f(x): 
for i in range(1000): 

ans = i
for i in range(x): 

ans += 1 
for i in range(x): 

for j in range(x): 
ans += 1 

Complexity is 1000 + 2x + 2x2, if each line takes one step 
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Example
•1000+2x+2x2

• If x is small, constant term dominates
• E.g., x = 10 then 1000 of 1220 steps are in first loop

• If x is large, quadratic term dominates 
• E.g. x = 1,000,000, then first loop takes 0.000000005% of 

time, second loop takes 0.0001% of time (out of 
2,000,002,001,000 steps)! 
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Example
•So really only need to consider the nested loops 

(quadratic component) 

•Does it matter that this part takes 2x2 steps, as 
opposed to say x2 steps? 

−For our example, if our computer executes 100 million 
steps per second, difference is ~5.5 hours versus ~2.75 
hours 

−On the other hand if we can find a linear algorithm, this 
would run in a fraction of a second 

−So multiplicative factors probably not crucial, but order of 
growth is crucial 
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Rules of thumb for complexity 
•Asymptotic complexity 
−Describe running time in terms of number of basic steps 
−If running time is sum of multiple terms, keep one with 

the largest growth rate 
−If remaining term is a product, drop any multiplicative 

constants 

•Use “Big O” notation (aka Omicron) 
• Gives an upper bound on asymptotic growth of a function 
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Complexity classes 
•O(1) denotes constant running time 

•O(log n) denotes logarithmic running time 

•O(n) denotes linear running time 

•O(n log n) denotes log-linear running time 

•O(nc) denotes polynomial running time (c is a constant) 

•O(cn) denotes exponential running time (c is a constant 
being raised to a power based on size of input) 
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Constant complexity 
•Complexity independent of inputs 

•Very few interesting algorithms in this class, but can 
often have pieces that fit this class 

•Can have loops or recursive calls, but number of 
iterations or calls independent of size of input 
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Logarithmic complexity 
•Complexity grows as log of size of one of its inputs 
•Example:
-Bisection search
-Binary search of a list 
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Logarithmic complexity 
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def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)//2
if alist[midpoint] == item:

found = True
elif item < alist[midpoint]:

last = midpoint-1
else:

first = midpoint+1

return found



Logarithmic complexity 
• Only have to look at loop 

as no function calls 
•Within while loop 

constant number of steps 
• How many times through 

loop? 
- How many times can one 

divide indexes to find 
midpoint?
- O(log(len(alist))) 
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def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)//2
if alist[midpoint] == item:

found = True
elif item < alist[midpoint]:

last = midpoint-1
else:

first = midpoint+1

return found



Linear complexity 
•Searching a list in order to see if an element is present 
•Add characters of a string, assumed to be composed 

of decimal digits 

def addDigits(s): 
val = 0 
for c in s: 

val += int(c) 
return val

•O(len(s)) 
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Linear complexity 
•Complexity can depend on number of recursive calls 

def fact(n): 
if n == 1: 

return 1 
else: 

return n*fact(n-1)  

•Number of recursive calls?
-Fact(n), then fact(n-1), etc. until get to fact(1) 
-Complexity of each call is constant
-O(n) 
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Log-linear complexity
•Many practical algorithms are log-linear 
•Very commonly used log-linear algorithm is merge 

sort 

27



Polynomial complexity
•Most common polynomial algorithms are quadratic, 

i.e., complexity grows with square of size of input 

•Commonly occurs when we have nested loops or 
recursive function calls 
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Quadratic complexity 
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def isSubset(L1, L2): 
for e1 in L1: 

matched = False 
for e2 in L2: 

if e1 == e2: 
matched = True 
break 

if not matched: 
return False 

return True 



Quadratic complexity 

• Outer loop executed 
len(L1) times 

• Each iteration will execute 
inner loop up to len(L2) 
times 

• O(len(L1)*len(L2)) 

•Worst case when L1 and 
L2 same length, none of 
elements of L1 in L2 

• O(len(L1)2) 
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def isSubset(L1, L2): 
for e1 in L1: 

matched = False 
for e2 in L2: 

if e1 == e2: 
matched = True 
break 

if not matched: 
return False 

return True 



Quadratic complexity 
Find intersection of two lists, return a list with each 
element appearing only once 
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def intersect(L1, L2): 
tmp = [] 
for e1 in L1: 

for e2 in L2: 
if e1 == e2: 

tmp.append(e1)  
res = [] 
for e in tmp: 

if not(e in res): 
res.append(e) 

return res



Quadratic complexity 

• First nested loop takes 
len(L1)*len(L2) steps

• Second loop takes at 
most len(L1) steps 

• Latter term 
overwhelmed by 
former term 

•O(len(L1)*len(L2)) 
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def intersect(L1, L2): 
tmp = [] 
for e1 in L1: 

for e2 in L2: 
if e1 == e2: 

tmp.append(e1)  
res = [] 
for e in tmp: 

if not(e in res): 
res.append(e) 

return res



Exponential complexity 
•Recursive functions where more than one recursive 

call for each size of problem 
• Towers of Hanoi
• Fibonacci series

•Many important problems are inherently 
exponential 
• Unfortunate, as cost can be high 
•Will lead us to consider approximate solutions more 

quickly 
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Exponential Complexity
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def fib(N):
if N == 1 or N == 0:

return N
else:

return fib(N-1) + fib(N-2)



Exponential Complexity
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def fib(N):
if N == 1 or N == 0:

return N
else:

return fib(N-1) + fib(N-2)

• Assuming return 
statement is 
constant time 

• Recall the recursive 
tree

• Complexity of this 
function is O(~2n)



Factorial Complexity
•The travelling salesperson problem.
•A salesperson has to visit n towns. Each pair of 

towns is joined by a route of a given length. Find 
the shortest possible route that visits all the towns 
and returns to the starting point.
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1. Consider city 1 as the starting and 
ending point.

2. Generate all (n-1)! Permutations of 
cities.

3. Calculate cost of every permutation 
and keep track of minimum cost 
permutation.

4. Return the permutation with 
minimum cost.



Complexity classes 
•O(1) denotes constant running time 

•O(log n) denotes logarithmic running time 

•O(n) denotes linear running time 

•O(n log n) denotes log-linear running time 

•O(nc) denotes polynomial running time (c is a constant) 

•O(cn) denotes exponential running time (c is a constant 
being raised to a power based on size of input) 

•O(n!) denotes factorial running time
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Comparing complexities 
•So does it really matter if our code is of a particular 

class of complexity? 

•Depends on size of problem, but for large scale 
problems, complexity of worst case makes a 
difference 
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Comparing complexities - example
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• There are alternative approaches with differing algorithm comlexities for 
doing something on a list of n elements. 

• Now you want to compare them. Assume that computer makes three 
billion calculations per second. Lets look for the running time of the 
algorithms.

Complexity n=10 n=1000 n=10^5 n=10^10

O(logn) < 1msec < 1msec < 1msec < 1msec

O(n) < 1msec < 1msec < 1msec < 1 min

O(nlogn) < 1msec < 1msec < 1 sec < 2 min

O(n2) < 1msec < 1msec < 1 min ~1000 year

O(2n) < 1 sec <1000 year <1000 year <1000 year

O(n!) < 1 sec <1000 year >1000 year >1000 year



Comparing the Complexities
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Constant versus Logarithmic
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Constant*versus*logarithmic*



Observations
•A logarithmic algorithm is often almost as good as a 

constant time algorithm 
• Logarithmic costs grow very slowly 
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Logarithmic versus Linear
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Logarithmic*versus*Linear*



Observations
• Logarithmic clearly better for large scale problems 

than linear 
•Does not imply linear is bad, however 
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Linear versus Log-linear
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Linear*versus*LogFlinear*



Observations
•While log(n) may grow slowly, when multiplied by a 

linear factor, growth is much more rapid than pure 
linear 
•O(n log n) algorithms are still very valuable.
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Log-linear versus Quadratic
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LogFlinear*versus*Quadra/c*



Observations
•Quadratic is often a problem, however. 
•Some problems inherently quadratic but if possible 

always better to look for more efficient solutions 
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Quadratic versus Exponential 

•Exponential algorithms very expensive 
-Right plot is on a log scale, since left plot almost invisible 

given how rapidly exponential grows 
•Exponential generally not of use except for small 

problems 
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Quadra/c*versus*Exponen/al*

•  Exponen/al*algorithms*very*expensive*
– Right*plot*is*on*a*log*scale,*since*leD*plot*almost*
invisible*given*how*rapidly*exponen/al*grows*

•  Exponen/al*generally*not*of*use*except*for*
small*problems**



Warning
• Execution time and the algorithm complexity are different 

paradigms.
• Running time may differ even if two algorithms have the 

same algorithm complexity (Even when their purposes are 
the same).
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def factIT(n):
answer = 1
while n > 0:

answer *= n
n -= 1

return answer

def factREC(n):
if n == 0:

return 1
else:

return n*factREC(n-1)

They have same complexity O(n). But their execution times are
different. 



Tips
•We know that, O(2n) algorithm complexity is bad. 

But, if we sure that n won’t be up too high, it won’t 
be matter.

•When we calculate the big-O, we did not care about 
constant factors.
-5n + 37 -> O(n)

•But, sometimes improving the constants does 
matter, e.g. in game development
-5n+37 à 5n+10 (not worthy, but better than nothing)
-5n+37 à 3n+12 (better)
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