
Lecture #03 – Introduction to Algorithms

Fuat Akal, Aykut Erdem & Erkut Erdem // Fall 2019

BBM 101
Introduction to
Programming I

Illustration: Antoine Doré // Quanta Magazine

Last time… Computers

2

Building a Computer
• Numbers
• Letters and Strings
• Structured Information

• Boolean Algebra and Functions
• Logic Using Electrical Circuits
• Computing With Logic
• Memory The Harvey Mudd Miniature Machine

von Neumann Architecture
• Boolean Algebra and Functions

Boolean Algebra and Functions

Boolean variables are variables that take the value True (1) or False (0)

With booleans 1 and 0 we could use the operations (functions) AND, OR, and NOT to build

up more interesting boolean functions

A truth table for a boolean function is a listing of all possible combinations of values

of the input variables, together with the result produced by the function

Truth tables for AND, OR, and NOT functions

x y x AND y
0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y
0 0 0

0 1 1

1 0 1

1 1 1

x NOT x
0 1

1 0

9/ 21

AND OR NOT

Central
Processing
Unit

Arithmetic
Logic Unit

Registers

Input Output

Memory

Lecture Overview
• Algorithms overview
• Your first algorithm: Search
– Three flavors of search (Random, Linear, Binary)

• Your second algorithm: Sorting
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

3

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Michael Littman’s Brown CS8: A First Byte of Computer Science course
—Ruth Anderson’s University of Washington CSE 140 course

Lecture Overview
• Algorithms overview
• Your first algorithm: Search
– Three flavors of search (Random, Linear, Binary)

• Your second algorithm: Sorting
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

4

What’s in Computer Science?

• Abstraction

• Problem Solving!

• Artistic, Creative.
– e.g. Digital Media, Electronic Music,

Games, Animation.

• Science.
– e.g. Understand and model reality.

5

Programming: Take away
1. Physical gates are inflexible.

2. Programming lets us reconfigure what a
computer does!

6

Trouble in Gateland?

7

Trouble in Gateland?

3

OR

P
OR(P,NOT(Q))

N
ot

Q NOT(Q)

OR(P,NOT(Q))
OR(P,NOT(Q))

Trouble in Gateland?

Physically represents OR(P,NOT(Q))

8

Trouble in Gateland?

4

OR

P
OR(P,NOT(Q))

N
ot

Q NOT(Q)

OR(P,NOT(Q))Physically represents

Trouble in Gateland?

Physically represents OR(P,NOT(Q))

Q: What if we want to reconfigure things?

9

Trouble in Gateland?

4

OR

P
OR(P,NOT(Q))

N
ot

Q NOT(Q)

OR(P,NOT(Q))Physically represents

Trouble in Gateland?

Physically represents OR(P,NOT(Q))

Q: What if we want to reconfigure things?
A. Programming

10

Trouble in Gateland?

4

OR

P
OR(P,NOT(Q))

N
ot

Q NOT(Q)

OR(P,NOT(Q))Physically represents

Programming
• Central Idea: The hardware does not have to

change for a computer to change its behavior.

• “Stored program” computers.

11

Programming
• Central Idea: The hardware does not have to

change for a computer to change its behavior.

• A fixed set of gates can change its behavior to
represent any desired function! Build one,
reprogram into anything.

12

Programming
• Central Idea: The hardware does not have to

change for a computer to change its behavior.

• A fixed set of gates can change its behavior to
represent any desired function! Build one,
reprogram into anything.

• Drawback: much slower.

13

Programming
• Lots of languages!
• Each language provides a different way to

write commands to the computer.
• They all do basically the same thing...
– “Turing equivalent”

14

Telescope Science
“Computer Science is no
more about computers
than astronomy is about
telescopes.”
- Dijsktra (possibly)

15

What’s in Computer Science?

• Abstraction

• Problem Solving!

• Artistic, Creative.
– e.g. Digital Media, Electronic Music,

Games, Animation.

• Science.
– e.g. Understand and model reality.

16

Algorithms: Takeaway
• Definition: An algorithm is a recipe for solving a

problem.

• Computer science is (loosely) the study of
algorithms.

17

Algorithms: Takeaway
• Definition: An algorithm is a recipe for solving a

problem.

• Computer science is (loosely) the study of
algorithms.

• That is, computer science is the study of automated
methods of solving problems.

18

Algorithms: Takeaway
• Definition: An algorithm is a recipe for solving a

problem.

• Computer science is (loosely) the study of
algorithms.

• That is, computer science is the study of automated
methods of solving problems.

• Programs are ways of carrying out algorithms!!!

19

Problem Specification
• A specification defines a problem

20

Problem Specification
• A specification defines a problem

• An algorithm solves a problem

21

Problem Specification
• A specification defines a problem

• An algorithm solves a problem

• INPUT: A deck of cards

22

Problem Specification
• A specification defines a problem

• An algorithm solves a problem

• INPUT: A deck of cards

• OUTPUT: True if the input desk is a complete
deck, False otherwise.

23

Problem Specification
• INPUT: A deck of cards

• OUTPUT: True if the input desk is a complete
deck, False otherwise.

24

Problem Specification
• INPUT: Some stuff!

• OUTPUT: Information about the stuff!

25

Problem Specification Examples
• INPUT: Two numbers, X and Y.

• OUTPUT: A single number, Z, such that Z = X + Y.

26

Problem Specification Examples
• INPUT: Some doctor’s knowledge about cancer.

• OUTPUT: Cure to cancer

27

Problem Specification Examples
• INPUT: The Internet

• OUTPUT: The winner of the 2020 election

28

Problem Specification Examples
• INPUT: Map of solar system, description of

physical laws, summary of current technology.

• OUTPUT: A method for colonizing Mars.

29

Problem Specification Examples
• INPUT: Data from the stock market.

• OUTPUT: Correct predictions about the market.

30

Problem Specification Examples
• INPUT: A bunch of songs from the last 1000

years.

• OUTPUT: A new song, guaranteed to be loved.

31

Problem Specification

32

Problem Specification

33

(1) Which of these problems are solvable?

Problem Specification

34

(1) Which of these problems are solvable?

(2) How can we characterize the difficulty of a problem?

Lecture Overview
• Algorithms overview
• Your first algorithm: Search
– Three flavors of search (Random, Linear, Binary)

• Your second algorithm: Sorting
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

35

Our First Problem: Search
Problem Specification
• Input:
– a collection of objects, call it “Basket”
– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”
– False if “Snozzberry” is not in “Basket”

36

Our First Problem: Search
Problem Specification
• Input:
– a list of objects, call it “Basket”
– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”
– False if “Snozzberry” is not in “Basket”

37

Our First Problem: Search
• Input:
– a list of objects, call it “Basket”
– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”
– False if “Snozzberry” is not in “Basket”

38

Search Algorithm #1
• Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for (“Snozzberry”),
report True!

3. Otherwise, go back to Step 1.

39

Question!
• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

40

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!
• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

41

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!
• Q: Does Random Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

42

Random Search

1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Q: What if the item is not in
“Basket”?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

43

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

44

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

45

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

46

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

47

Q: Is “lime” in the list?

Search Algorithm #2
• Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

48

Q: Is “lime” in the list?

Question!
• Q: Does Linear Search solve the Search Problem?

[A] Yes! [B] No! [C] I have no idea...

49

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

Question!
• Q: Does Linear Search solve the Search Problem?

50

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Search Problem

• Input:
– a collection of objects, call it “Basket”

– a specific object, call it “Snozzberry”

• Output:
– True if “Snozzberry” is in “Basket”

– False if “Snozzberry” is not in “Basket”

A: Yes! For any list, for any item, linear search
will solve Search!

Search Algorithm #3
• Binary Search: assumes a sorted list

• Idea: if we assume the list is sorted, surely
finding our item is easier!

51

You Try It

Q: Is 16 in the list?

52

You Try It

Q: Is 91 in the list?

53

Which Was Easier?

Q: Is 91 in the list?
54

Q: Is 16 in the list?

Search Algorithm #3
• Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less
than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

55

Binary Search

56

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Binary Search

57

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

58

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

59

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

60

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

61

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

62

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

63

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

64

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Because list is sorted, if our number is
in the list, it has to be to the left of 5!!!

Binary Search

65

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

3 < 5

Binary Search

66

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

67

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 3 in the list?

Binary Search

68

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

69

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

70

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

71

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

5 < 6

Binary Search

72

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

73

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

74

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

75

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

76

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

6 < 8

Binary Search

77

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

1 3 4 5 7 8 9

Q: Is 6 in the list?

Binary Search

78

1 3 4 5 7 8 9

Another way of thinking about it:

Linear Search = check every item in
the worst case!

Binary Search = uses
sorted property to avoid checking

every item

Q: Is 6 in the list?

Question

79

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

Question

80

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Question

81

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Question

82

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Question

83

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 1

Question

84

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Question

85

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 2

Question

86

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 3

Question

87

1 3 4 5 7 8 9 11 12 14 16

Q: How many items will Binary Search
inspect when searching for 6?

[A] 1 [B] 2 [C] 3 [D] 4 [E] 5

Inspections: 4

Properties of Algorithms
1. Correctness: does the algorithm satisfy the
problem specification?

2. Growth Rate: how many “primitive”
operations must the computer execute to solve
the problem for various sized inputs?

88

Growth Rates
• Linear Search vs. Binary Search

• Well we already said that Binary is faster, but by
how much?

89

Growth Rates
• Linear Search vs. Binary Search

• Well we already said that Binary is faster, but by
how much?

90

More about the growth rates
at the end of the semester!

Lecture Overview
• Algorithms overview
• Your first algorithm: Search
– Three flavors of search (Random, Linear, Binary)

• Your second algorithm: Sorting
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

91

Our Second Problem: Sorting

92

Problem Specification
• Input:
– a collection of orderable objects, call it “Basket”

• Output:
– “Basket”, where each item is in order

Our Second Problem: Sorting

93

Problem Specification
• Input:

– a collection of orderable bjects, call it
“Basket”

• Output:
– “Basket”, where each item is in order

Sort Solution #1
Random Sort
1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

94

Sort Solution #1
Random Sort
1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Let’s take a look!

95

Sort Solution #1
Random Sort

96
https://www.youtube.com/watch?v=C9mdDUutRRg

https://www.youtube.com/watch?v=C9mdDUutRRg

Sort Suggestions?

Any proposals?

97

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat....
(for the 3rd smallest, 4th smallest, …)

98

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

99

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

100

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

101

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

102

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

103

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

104

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

105

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

106

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

107

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.
4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, …)

108

Sort Solution #2
Selection Sort

109
https://www.youtube.com/watch?v=hqBPYhAQeTI

https://www.youtube.com/watch?v=hqBPYhAQeTI

Our Second Problem: Sorting

111

Problem Specification
• Input:
– a collection of orderable objects, call it “Basket”

• Output:
– “Basket”, where each item is in order

Sort Solution #1
Random Sort
1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

112

Sort Solution #2
Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat....

113

Our Second Problem: Sorting

114

Problem Specification
• Input:
– a collection of orderable objects, call it “Basket”

• Output:
– “Basket”, where each item is in order

Many possible solutions to this problem exist!

Our Second Problem: Sorting

115

Problem Specification
• Input:
– a collection of orderable objects, call it “Basket”

• Output:
– “Basket”, where each item is in order

Many possible solutions to this problem exist!
Then, how to develop a computer program?

Lecture Overview
• Algorithms overview
• Your first algorithm: Search
– Three flavors of search (Random, Linear, Binary)

• Your second algorithm: Sorting
– Two flavors of sorting (Random, Selection)

• Program Development Strategies

116

Program development methodology

Algorithm first, then Implementation:
1. Define the problem
2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

117

Program development methodology
Algorithm first, then Implementation:
1. Define the problem

A. Write the problem specification:
An natural language description of the input and output for
the whole program. (Do not give details about how you will
compute the output.)

B. Create test cases for the whole program
• Input and expected output

2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

118

Program development methodology
Algorithm first, then Implementation:
1. Define the problem
2. Decide upon an algorithm

A. Implement it in an algorithmic manner (e.g. in English)
• Write the recipe or step-by-step instructions

B. Test it using paper and pencil
• Use small but not trivial test cases
• Play computer, animating the algorithm
• Be introspective

– Notice what you really do
– May be more or less than what you wrote down
– Make the algorithm more precise

3. Translate it into code

Try to do these steps in order
119

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code
A. Implement it using a programming language
• Decompose it into logical units (functions)

Try to do these steps in order

120

Why functions?
There are several reasons:
• Creating a new function gives you an opportunity to name

a group of statements, which makes your program easier
to read and debug.

• Functions can make a program smaller by eliminating
repetitive code. Later, if you make a change, you only have
to make it in one place.

• Dividing a long program into functions allows you to debug
the parts one at a time and then assemble them into a
working whole.

• Well-designed functions are often useful for many
programs. Once you write and debug one, you can reuse it.

121

Program development methodology
Algorithm first, then Implementation:
1. Define the problem
2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order
– It’s OK (even common) to back up to a previous step

when you notice a problem
– You are incrementally learning about the problem,

the algorithm, and the code
– “Iterative development”

122

Waterfall Development Strategy
• Before the iterative model,

we had the waterfall
strategy.

• Each step handled once.
• The model had a limited

capability and received
too many criticism.

• Better than nothing!!
• Do not dive in to code!!
• Please!!

123

* From wikipedia waterfall development model

Iterative Development Strategy
• Software development is a living process.
• Pure waterfall model wasn’t enough.
• Iterative development strategy suits best to

our needs (for now).

124* From wikipedia Iterative development model

Iterative Development Strategy

125

* From wikipedia Iterative development model

