lllustration: Antoine Doré // Quanta Magazine

BBM 101

Introd tion to

e [T S

Ny, S e
— L siv————

n//Fall2619< >
SEA o *\.____._————’3

~—

= —— M@M

ut Erd }r%’ : &,i?l%utfrde_
Y 4

t\

——————

Last time... Computers

Building a Computer von Neumann Architecture

* Numbers Boolean Algebra and Functions
e Letters and Strings

e Structured Information

Arithmetic
Logic Unit

012345678 9ABCDEF A
IEEE 754 Floating Point Standard 0 o o « REg'Sters
1
['s |e=exponent] m=mantissa | 2l % sl%l&l O * =, 1-1.1/
1bit 8bits 23 bits 3/0f1]|23]4|s5|6|7|8[9]:|;|<|=|>]7
sle|als|c|o|e|[F|c|n|z|a][k|L|m|[Nn]o
number = (-1)S * (1.m) * 28127 sipla[rls[T[ufv]w|x]|v[z]|\][1]A]_
6| |a|blc|d|e|f|g|lh|i|j|k|T1|m|[n]o
7 glr|s|tfufviw|[x|y|lz|[{|||}|~
Hexadecimal to ASCII conversion table

* Boolean Algebra and Functions
* Logic Using Electrical Circuits
 Computing With Logic

* Memory

The Harvey Mudd Miniature Machine

HMMM Simulator About/Credits

«=Back | safeMode ¢ [I Runl > o

ceu 60 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Register Binary Hex Decimal/Instruction 70 0000 0000 0000 0000 0000 0000 000D 0000 0000 0000 0000 0000 0000 0000 0000 0000
AND pc. 00000000 0000 0000 ox0000 [0 8 0000 0000 0000 0000 000D 000D 0000 0000 000D 0000 0000 0000 0000 0000 0000 0000
r0 | 00000000 0000 0000 0x0000 0 LY 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
1 00000000 0000 6000 o000 {0 BO 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 0000
r2 | 0000 0000 0000 6000 o000 {0 €O 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
r3 00000000 0000 6000 o000 {0 DO 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
r4 00000000 0000 0000 o000 {0 E0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
x Yy X AND Y x Yy X OR Y 15 00000500 00000000 oowo o Fo 00 oo0o o000 0000 0000 0000 0000 0000 o000 o000 om0 0000 0000 0000 0000 G00o
0 0 0 0 0 0 T NOT & 50000000 000 0000 0000 0 inary Value Current nstruction
r9 0000 0000 0000 0000 0x0000 0 Hex Value Next Instruction (pointed t...
0 1 0 0 1 1 0 1 1 structonvalue Updated RAM values
2. 00000000 00000000 oo o
1 0 0 1 O 1 1 O 130000 0000 0000 0000 0x0000 0
4. 00000000 00000000 oo o
115 00000000 00000000 S0 o
1 1 1 1 1 1 EE— —

Lecture Overview

e Algorithms overview
* Your first algorithm: Search

— Three flavors of search (Random, Linear, Binary)

* Your second algorithm: Sorting

— Two flavors of sorting (Random, Selection)

* Program Development Strategies

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Michael Littman’s Brown CS8: A First Byte of Computer Science course
—Ruth Anderson’s University of Washington CSE 140 course

Lecture Overview

* Algorithms overview

What’s in Computer Science?

e Abstraction

Problem Solving!

Artistic, Creative.

— e.g. Digital Media, Electronic Music,
Games, Animation.

e Science.

— e.g. Understand and model reality.

Programming: Take away

1. Physical gates are inflexible.

2. Programming lets us reconfigure what a
computer does!

Trouble in Gateland?

OR(P.NOT(Q))

P
OR(PNOT(Q))
Q NOT(Q)

10N

Trouble in Gateland?

Physically represents OR(P.NOT(Q))

-~

10N

NOT(Q)

OR(PNOT(Q))

!
AT
) =)

W,

Trouble in Gateland?

Physically represents OR(P.NOT(Q))

a N
V\ OR(PNOT(Q))

Q NOT(Q) , OR)

J

_

Q: What if we want to reconfigure things?

10N

Trouble in Gateland?

Physically represents OR(P.NOT(Q))

a N
V\ OR(PNOT(Q))

Q NOT(Q) , OR)

J

_

Q: What if we want to reconfigure things?

10N

A. Programming

Programming

* Central Idea: The hardware does not have to
change for a computer to change its behavior.

e “Stored program” computers.

Programming

* Central Idea: The hardware does not have to
change for a computer to change its behavior.

* A fixed set of gates can change its behavior to
represent any desired function! Build one,
reprogram into anything.

Programming

* Central Idea: The hardware does not have to
change for a computer to change its behavior.

* A fixed set of gates can change its behavior to
represent any desired function! Build one,
reprogram into anything.

e Drawback: much slower.

Programming

* Lots of languages!

* Each language provides a different way to
write commands to the computer.

* They all do basically the same thing...

— “Turing equivalent”

Telescope Science

“Computer Science is no
more about computers
than astronomy is about
telescopes.”

- Dijsktra (possibly)

15

What’s in Computer Science?

e Abstraction

Problem Solving!

Artistic, Creative.

— e.g. Digital Media, Electronic Music,
Games, Animation.

e Science.

— e.g. Understand and model reality.

16

Algorithms: Takeaway

* Definition: An algorithm is a recipe for solving a
problem.

 Computer science is (loosely) the study of
algorithms.

Algorithms: Takeaway

* Definition: An algorithm is a recipe for solving a
problem.

 Computer science is (loosely) the study of
algorithms.

* That is, computer science is the study of automated
methods of solving problems.

Algorithms: Takeaway

Definition: An algorithm is a recipe for solving a
problem.

Computer science is (loosely) the study of
algorithms.

That is, computer science is the study of automated
methods of solving problems.

Programs are ways of carrying out algorithms!!!

Problem Specification

* A specification defines a problem

Problem Specification

* A specification defines a problem

* An algorithm solves a problem

Problem Specification

* A specification defines a problem
* An algorithm solves a problem

* INPUT: A deck of cards

22

Problem Specification

* A specification defines a problem

* An algorithm solves a problem

* INPUT: A deck of cards

e OUTPUT: True if the input desk is a complete
deck, False otherwise.

* |[Ee e |fe e |fea]|fss]|fss]fss]|Pas * B fes faslfas [aa|fes Roas|las
& o | [fags |[Fate & T)

* * S IBEA IR IR A IR % & * ARSI IR v
IR IR IR IR HIEXHIE X S IS LB IER IR HEEHIEEHER HIE X IR R IR
o [faa|oa|lon|lona|lon|[len]|laen o o |[iaa (aa|flan [[aa|laa [Jaa]|lan
. ey 3 o‘ Q. '’ » T “Q

- o [[aa] e |an el S - o [[aa [a%a|laa (000 09
v | vwil| wol| vel|ve| vl v el Vel i el vel vel velvel Vel vel v
v |fov|fev|ve]|fve|Eve]|lve]lve v o |[ivv Cve|ve [ve Cve Cve|lve
v, v " ¥ v, vy | oo

v v v | ve | ve :v: :: v v ve |velive (W21 23
'

o aallaal|aal|eadl aallaalla®; A2 Al aal aalaal | aal aal| aal A
o [[ie oo o |[ce o Zo‘o XA XX ¢ Fe ([fee BeoRee [Tee o0 o0 Doy
IRAIEX o, 0| 0%

. . IR IROCH I COM N . . . LI IO IR
I I I I IR IR IRLY O 5 e Y el e el e el | el el el %

23

Problem Specification

* INPUT: A deck of cards

e OUTPUT: True if the input desk is a complete
deck, False otherwise.

Problem Specification

 INPUT: Some stuff!

 OUTPUT: Information about the stuff!

Problem Specification Examples

e INPUT: Two numbers, X and Y.

e OUTPUT: A single number, Z, such that Z =X +Y.

Problem Specification Examples

* INPUT: Some doctor’s knowledge about cancer.

e QUTPUT: Cure to cancer

Problem Specification Examples

e INPUT: The Internet

e OUTPUT: The winner of the 2020 election

Problem Specification Examples

* INPUT: Map of solar system, description of
physical laws, summary of current technology.

 OUTPUT: A method for colonizing Mars.

Problem Specification Examples

* INPUT: Data from the stock market.

e OUTPUT: Correct predictions about the market.

Problem Specification Examples

* INPUT: A bunch of songs from the last 1000
years.

 OUTPUT: A new song, guaranteed to be loved.

Problem Specification

Dark Energy
Accelerated Expansion
Afterglow Light \
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation

7
--'x'\“i -

=) % =) % [:> e

>~
Unfolded

1st Stars
about 400 million yrs.

Big Bang Expansion
Folded 9 a9 =Xp
13.7 billion years

32

Problem Specification

nergy
insion

SOU,U0U YIS,

Inflation

v
S -

o

i A

a7
Unfolded

f Quantum
I:> % I:> e
»

Big Bang Expansion
Folded 9 g =%
13.7 billion years

33

Problem Specification

Unfolded

Dark Energy
Accelerated Expansion

Quantum
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

34

Lecture Overview

* Your first algorithm: Search

— Three flavors of search (Random, Linear, Binary)

Our First Problem: Search

Problem Specification
* |Input:
— a collection of objects, call it “Basket”

— a specific object, call it “Snozzberry”

* Output:
— True if “Snozzberry” is in “Basket”

— False if “Snozzberry” is not in “Basket”

36

Our First Problem: Search

Problem Specification
* |Input:
— a list of objects, call it “Basket”

— a specific object, call it “Snozzberry”

* Output:
— True if “Snozzberry” is in “Basket”

— False if “Snozzberry” is not in “Basket”

-+
|\

1
2

S~ W

5
6

:

UM
3

© o

basket

apple
pineapple

grapes
orange

length: 9

4

37

Our First Problem: Search

* |Input:
— a list of objects, call it “Basket”

— a specific object, call it “Snozzberry”

* Output:
— True if “Snozzberry” is in “Basket”
— False if “Snozzberry” is not in “Basket”

Search Algorithm #1

e Random Search
1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for (“Snozzberry”),
report True!

3. Otherwise, go back to Step 1.

Question!

e Q: Does Random Search solve the Search Problem?

Random Search
1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

[A] Yes!

Search Problem

* I|nput:
— acollection of objects, call it “Basket”

— aspecific object, call it “Snozzberry”

* Qutput:

— True if “Snozzberry” is in “Basket”

— False if “Snozzberry” is not in “Basket”

[B] No!

[C] | have no idea...

Question!

e Q: Does Random Search solve the Search Problem?

Random Search
1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

[A] Yes!

Search Problem

* I|nput:
— acollection of objects, call it “Basket”

— aspecific object, call it “Snozzberry”

* Qutput:

— True if “Snozzberry” is in “Basket”

— False if “Snozzberry” is not in “Basket”

[B] No!

[C] | have no idea...

Question!

e Q: Does Random Search solve the Search Problem?

Random Search
1. Pick a random item from “Basket”.

2. If it’s the item we’re looking for
(“Snozzberry”), report True!

3. Otherwise, go back to Step 1.

Q: What if the item is not in

“Basket”?

[A] Yes!

Search Problem

Input:
— acollection of objects, call it “Basket”

— aspecific object, call it “Snozzberry”

* Qutput:

— True if “Snozzberry” is in “Basket”

— False if “Snozzberry” is not in “Basket”

[B] No!

[C] | have no idea...

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Q: Is “lime” in the list?

basket
N apple
72| pineapple

o A~ W

6

© o N

Lt length: 9

44

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Q: Is “lime” in the list?

basket
i} apple
72| pineapple

A W

N orange

o

g‘ﬁ HELE]

©

Lt length: 9

45

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Q: Is “lime” in the list?

~

basket

N apple

¥4 pineapple
<N strawberry
4
3 grapes
N orange
/4| gra

8
9

il

Lt length: 9

46

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in the
list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Q: Is “lime” in the list?

~

1
2
3
4
5
6
7
8
9

-

basket

apple
pineapple

strawberry
lime
grapes
orange

i

length: 9

47

Search Algorithm #2

 Linear Search
1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index 2,
and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t seen
it, report False!

Q: Is “lime” in the list?

~

1
2
3
4
5
6
7
8
9

-

basket

apple
pineapple

strawberry
lime
grapes
orange
gra

il

length: 9

48

Question!

e Q: Does Linear Search solve the Search Problem?

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index
2, and so on)

3. If, at any point, the index we’re looking at in
the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

[A] Yes! [B] No!

Search Problem

* I|nput:
— acollection of objects, call it “Basket”

— aspecific object, call it “Snozzberry”

* Qutput:
— True if “Snozzberry” is in “Basket”

”n

— False if “Snozzberry” is not in “Basket

[C] | have no idea...

Question!

e Q: Does Linear Search solve the Search Problem?

Linear Search

1. Put the items from “Basket” in a list

2. Check each item in turn (index 1, then index

2, and so on)

3. If, at any point, the index we’re looking at in

the list contains the item, report True!

4. If we get to the end of the list and haven’t
seen it, report False!

Search Problem

* I|nput:
— acollection of objects, call it “Basket”

— aspecific object, call it “Snozzberry”

* Qutput:
— True if “Snozzberry” is in “Basket”

”n

— False if “Snozzberry” is not in “Basket

A: Yes! For any list, for any item, linear search

will solve Search!

Search Algorithm #3

* Binary Search: assumes a sorted list

* |dea: if we assume the list is sorted, surely
finding our item is easier!

You Try It

~\

numbers

e
W N = O © o N O O & WO N -

+

length: 13

;-

/

N\

Q:Is 16 in the list?

You Try It

D
J

numbers
! (G
N |
s EH
« EEEEEETY
5
s
7 CH
s LI
s R
10 (C
1
2 CR
1 C
Lt length: 13 Y

Q: Is 91 in the list?

53

Which Was Easier?

g numbers | f numbers E

+ + [

> ER > (e

s + T

: -

5 IR 5 R

s Iy 3 S|

7 EI 7 CE

s s [

s CAR s ENN
o T 10 (X
1 1 G
t length: 13 . £ length: 13 Y,

Q: Is 16 in the list? Q: Is 91 in the list?

Search Algorithm #3
* Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less
than the middle number?

4. If greater, search the right half.

5. If less, search the left half.

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

3<5

5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

3<5

5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

3<5

5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

Because list is sorted, if our number is
in the list, it has to be to the left of 5!!!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

3<5

5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

3<5

5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search

1. Check the middle of the list

2. If the middle item is our item, report True! /

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 3 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5<6

5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

5<6

5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

6<8

5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

6<8

5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list
2. If the middle item is our item, report True!
3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.

6<8

5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Binary Search: assumes a sorted list

1. Check the middle of the list

2. If the middle item is our item, report True!

3. Otherwise, ask: is our number greater than or less than the middle number?

4. If greater, search the right half.
5. If less, search the left half.

Q: Is 6 in the list?

Binary Search

Another way of thinking about it:

Binary Search = uses
sorted property to avoid checking
every item

Linear Search = check every item in
the worst case!

Q: Is 6 in the list?

Question

Q: How many items will Binary Search

inspect when searching for 67

11

12

14

16

Question

Q: How many items will Binary Search
inspect when searching for 67

[A]1 [B]2 [C]3 [D]4 [E]5

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 1

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 1

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 2

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 2

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 3

Question

Q: How many items will Binary Search
inspect when searching for 67

[Al1 [B]2 [C]3 [D]4 [E]5

Inspections: 4

Properties of Algorithms

1. Correctness: does the algorithm satisfy the
problem specification?

2. Growth Rate: how many “primitive”
operations must the computer execute to solve
the problem for various sized inputs?

Growth Rates

* Linear Search vs. Binary Search

 Well we already said that Binary is faster, but by
how much?

3
g
@

R
W N - O ©W 0 N O O B W N =

-
3
c

P

length: 13

N\

89

Growth Rates

* Linear Search vs. Binary Search

 Well we already said that Binary is faster, but by
how much?

=
=
3
=3
]
@

More about the growth rates
at the end of the semester!

' -_— e e
1r @ N o
o)
3
Qa
~—
=
—
w

90

Lecture Overview

* Your second algorithm: Sorting

— Two flavors of sorting (Random, Selection)

Our Second Problem: Sorting

Problem Specification
* |Input:
— a collection of orderable objects, call it “Basket”

* Output:
— “Basket”, where each item is in order

Our Second Problem: Sorting

Problem Specification

* Input:
— a collection of orderable bjects, call it
“Basket”
* Output:
— “Basket”, where each item is in order
f basket A [basket |
1 1
z Neocomt |
; ;
« I :
; Jime
: :
v v
; :
N oooomt ;
+ length: 9 4 & _ 2

Sort Solution #1

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Sort Solution #1

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Let’s take a look!

Sort Solution #1

Random Sort

https://www.youtube.com/watch?v=CO9mdDUutRRg

96

https://www.youtube.com/watch?v=C9mdDUutRRg

Sort Suggestions?

Any proposals?

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat....
(for the 3rd smallest, 4th smallest, ...)

Sort Solution

Selection Sort
1. “Select” the smallest item in the list.

2

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

PR

>

‘4
*
003

99

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘e e | fee| [ee| [o
¢ | e |0
O ey (44 [y [t

100

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘e e | fee| [ee| [o
¢ | e |0
O ey (44 [y [t

101

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘o | oo [e | [ee| Fee
¢ ¢4 ¢
¢ ’ “g & ’ 003 “g

102

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘o | [ee| [e | [Pee| Fee
¢ ¢4 ¢
¢ ’ “g & ’ 003 “g

103

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

v | [F e | [Fee| e oo
4 \ R 4 ¢
4 ’ ¢ ' “g 003 “g

104

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘e | P fee| [fee| Fee
4 \ R 4 ¢
4 ’ ¢ ' “g 003 “g

105

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

‘e | P fee| [fee| [ee
4 \ R 4 ¢
4 ’ ¢ ' “g 003 “g

106

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

Yo e e [fee| [‘ee
¢ ¢ | | +e
Yo Ly [t [0 [

107

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat.... (for the 3rd smallest, 4th smallest, ...)

Y P e | fee| [fee| [‘ee
¢ ¢ | 4o
Yo [y (%% (% (%

108

Sort Solution #2

Selection Sort

https://www.youtube.com/watch?v=hqgBPYhAQeT]

109

https://www.youtube.com/watch?v=hqBPYhAQeTI

Our Second Problem: Sorting

Problem Specification
* |Input:

— a collection of orderable objects, call it “Basket”
* Output:

— “Basket”, where each item is in order

Sort Solution #1

Random Sort

1. Shuffle the list up randomly (like shuffling a
deck).

2. Check to see if the list is in order. If it is, return
the list.

3. If it is not, repeat from step 1.

Sort Solution #2

Selection Sort
1. “Select” the smallest item in the list.

2. Put it at the beginning.

3. “Select” the second smallest item.

4. Put it 2nd from the beginning.

5. Rinse and repeat....

Our Second Problem: Sorting

Problem Specification
* |Input:

— a collection of orderable objects, call it “Basket”
* Output:

— “Basket”, where each item is in order

Many possible solutions to this problem exist!

Our Second Problem: Sorting

Problem Specification
* |Input:

— a collection of orderable objects, call it “Basket”
* Output:

— “Basket”, where each item is in order

Many possible solutions to this problem exist!

Then, how to develop a computer program?

Lecture Overview

* Program Development Strategies

Program development methodology

Algorithm first, then Implementation:
1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

Program development methodology

Algorithm first, then Implementation:
1. Define the problem

A. Write the problem specification:

An natural language description of the input and output for
the whole program. (Do not give details about how you will
compute the output.)

B. Create test cases for the whole program
. Input and expected output

2. Decide upon an algorithm
3. Translate it into code

Try to do these steps in order

Program development methodology

Algorithm first, then Implementation:
1. Define the problem
2. Decide upon an algorithm

A. Implementitin an algorithmic manner (e.g. in English)
. Write the recipe or step-by-step instructions

B. Test it using paper and pencil
. Use small but not trivial test cases
. Play computer, animating the algorithm

. Be introspective
— Notice what you really do
— May be more or less than what you wrote down
- Make the algorithm more precise

3. Translate it into code

Try to do these steps in order

Program development methodology

Algorithm first, then Implementation:

1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

A. Implement it using a programming language

 Decompose it into logical units (functions)

Try to do these steps in order

Why functions?

There are several reasons:

* Creating a new function gives you an opportunity to name
a group of statements, which makes your program easier
to read and debug.

* Functions can make a program smaller by eliminating
repetitive code. Later, if you make a change, you only have
to make it in one place.

* Dividing a long program into functions allows you to debug
the parts one at a time and then assemble them into a
working whole.

* Well-designed functions are often useful for many
programs. Once you write and debug one, you can reuse it.

Program development methodology

Algorithm first, then Implementation:
1. Define the problem

2. Decide upon an algorithm

3. Translate it into code

Try to do these steps in order

— It’s OK (even common) to back up to a previous step
when you notice a problem

— You are incrementally learning about the problem,
the algorithm, and the code

— “lterative development”

Waterfall Development Strategy

Before the iterative model,
we had the waterfall

t t ReqUirements |$ Product requirements document
strategy. e
EaCh Step handled Once. DeS|g|1 ¢> Software architecturs
.] \

The model had a limited Implementation > -
capability and received —

e . Verification
too many criticism. —
Better than nothing!! Maintenance

Do not dive in to code!!

P I ease I I * From wikipedia waterfall development model

123

Iterative Development Strategy

* Software development is a living process.
* Pure waterfall model wasn’t enough.

* [terative development strategy suits best to
our needs (for now).

Requirements Analysis & Design

Planning Implementation

Initial

Planning Deployment

Evaluation |
Testing

* From wikipedia Iterative development model

124

Iterative Development Strategy

Business Modeling
Requirements
Analysis & Design
Implementation
Test

Deployment

Iterative Development

Business value is delivered incrementally in

time-boxed cross-discipline iterations.

Inception

Elaboration Construction

Transition

I1

El | E2 | C1 Cc2 Cc3

(of

Tl

T2

Time

* From wikipedia Iterative development model

125

