
Lecture #06 – Arrays, Lists, Tuples

Fuat Akal, Aykut Erdem & Erkut Erdem // Fall 2019

BBM 101
Introduction to
Programming I

Wikimedia Commons

Last time… Control Flow, Functions

2

Repeating yourself

Making decisions

Functions
def dbl_plus(x):

return 2*x + 1

if val < 0:
result = - val

else:
result = val

for f in [30,40,50]:
print(f,(f-32)/9.0*5)

counter = 1
while counter <= n:

s = s + counter
counter += 1

if height > 100:
print("space")

elif height > 50:
print("mesosphere")

elif height > 20:
print("stratosphere")

else:
print("troposphere")

Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

3

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

We will cover these later.

Data Structures
• A data structure is way of organizing data
– Each data structure makes certain operations

convenient or efficient
– Each data structure makes certain operations

inconvenient or inefficient

• Example: What operations are efficient with:
– a file cabinet sorted by date?
– a shoe box?

Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

5

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

An Array is …
• a container which can hold a fix number of items and these

items should be of the same type.
– Each item stored in an array is called an element.
– Each location of an element in an array has a numerical index, which is

used to identify the element.

6

Wait for Understanding Data lecture
(Week 13) to learn more about arrays.

Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

7

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

A Collection Groups Similar Things
• List: ordered
• Set: unordered, no duplicates
• Tuple: unmodifiable list
• Dictionary: maps from values to values

Example: word → definition

Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

9

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

What is a List?
• A list is an ordered sequence of values, where each

value is identified by an index.

• What operations should a list support efficiently and
conveniently?
– Creation
– Querying/Lookup
– Mutation

10

List Creation
• Use square brackets to specify a list.
• Separate each element with a comma.

a = [3, 4, 5]

b = [5, 3, 'hi']

c = [4, 'a', a]

d = [3, 1, 2*2, 1, 10/2, 10-1]

e = [] # empty list

11

List Creation: Example - 1

L = ['I did it all', 4, 'love']

for i in range(len(L)):
print(L[i])

>> I did it all
>> 4
>> love

12

List Creation: Example - 2
Techs = ['MIT', 'Caltech']
Ivys = ['Harvard', 'Yale', 'Brown']
Univs = [Techs, Ivys]
Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']]

print('Univs =', Univs)
print('Univs1 =', Univs1)
print(Univs == Univs1)

>> Univs = [['MIT','Caltech'],['Harvard','Yale','Brown']]
>> Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']]
>> True

13

Index
expression

How to Evaluate a List Expression

• [a, b, c, d] list creation
– To evaluate:

• evaluate each element to a value, from left to right
• make a list of the values

– The elements can be arbitrary values, including lists
• ["a", 3, 3.14*r*r, fahr_to_cent(-40), [3+4, 5*6]]

• a[b] list indexing or dereferencing
– To evaluate:

• evaluate the list expression to a value
• evaluate the index expression to a value
• if the list value is not a list, execution terminates with an error
• if the element is not in range (not a valid index), execution terminates

with an error
• the value is the given element of the list value (counting from zero)

List
expression

Same tokens “[]”
with two distinct
meanings

14

List Expression Examples

What does this mean (or is it an error)?

["four", "score", "and", "seven", "years"][2]

["four", "score", "and", "seven", "years"][0,2,3]

["four", "score", "and", "seven", "years"][[0,2,3]]

["four", "score", "and", "seven", "years"][[0,2,3][1]]

15

List Expression Examples
>>> ["four", "score", "and", "seven", "years"][2]
'and’

>>> ["four", "score", "and", "seven", "years"][0,2,3]
TypeError: list indices must be integers or slices, not tuple

>>> ["four", "score", "and", "seven", "years"][[0,2,3]]
TypeError: list indices must be integers or slices, not list

>>> ["four", "score", "and", "seven", "years"][[0,2,3][1]]
'and'

16

List Lookup
• Extracting part of the list:
– Single element: mylist[index]
– Sublist (“slicing”): mylist[startidx : endidx]

• Find/lookup in a list
– x in mylist
• Evaluates to a boolean value

– mylist.index(x)
• Return the int index in the list of the first item whose value is x.

It is an error if there is no such item.

– list.count(x)
• Return the number of times x appears in the list.

17

List Lookup: Exercise
def index(somelist, value):

"""Return the position of the first occurrence of
the element value in the list somelist.
Return None if value does not appear in
somelist."""

i = 0
for c in somelist:
if c == value:
return i

i = i + 1
return None

18

gettysburg = ["four", "score", "and",
”seven", "years", "ago"]

index(gettysburg, "and") # 2
index(gettysburg, "years”) # 4
gettysburg.count('seven') # 1

List Mutation
• Insertion
• Removal
• Replacement
• Rearrangement

19

List Insertion
• mylist.append(x)

– Extend the list by inserting x at the end

• mylist.extend(L)
– Extend the list by appending all the items in the argument list

• mylist.insert(i, x)
– Insert an item before a given position.
– a.insert(0, x) inserts at the front of the list
– a.insert(len(a), x) is equivalent to a.append(x)

20

List Insertion: Examples
Python statement Content of list1

>>> list1 = [1, 2, 3] [1, 2, 3]

>>> list1.append(4) [1, 2, 3, 4]

>>> list1.insert(2, 5) [1, 2, 5, 3, 4]

>>> list2 = [10, 20]
>>> list1.extend(list2) [1, 2, 5, 3, 4, 10, 20]

>>> list1.append(list2) [1, 2, 5, 3, 4, 10, 20, [10, 20]]

21

Content of list1

[1, 2, 3]

[1, 2, 3, 4]

[1, 2, 5, 3, 4]

[1, 2, 5, 3, 4, 10, 20]

[1, 2, 5, 3, 4, 10, 20, [10, 20]]

>>> list1[7]
[10, 20]
>>> list1[7][0]
10
>>> list1[7][1]
20

Notation from the Python Library Reference:
The square brackets around the parameter, “[i]”, means the argument is optional.
It does not mean you should type square brackets at that position.

List Removal
• list.remove(x)

– Remove the first item from the list whose value is x
– It is an error if there is no such item

• list.pop([i])
– Remove the item at the given position in the list, and return it.
– If no index is specified, a.pop() removes and returns the last item in the list.

22

List Removal - Examples

23

Python statement

>>> list1 = [1, 2, 3]

>>> list1.remove(2)

>>> list2 = list1.copy()
>>> list1.extend(list2)

>>> list1.remove(3)

>>> list1.pop()

Content of list1

[1, 2, 3]

[1, 3]

[1, 3, 1, 3]

[1, 1, 3]

[1, 1]

How can you remove
all occurences of an
element?

List Replacement
• mylist[index] = newvalue

• mylist[start : end] = newsublist
– Can change the length of the list
– start is inclusive, end is not
– mylist[start : end] = [] # removes multiple elements
– a[len(a):] = L # is equivalent to a.extend(L)

24

List Replacement - Examples

25

Python statement

>>> list1 = [1, 2, 3]

>>> list1[len(list1)-1] = 9

>>> list2 = list1
>>> list1[1:2] = list2

>>> list1[1:3] = list2

>>> list2[3:8] = []

>>> list2 = [5, 6]

Content of list1

[1, 2, 3]

[1, 2, 9]

[1, 1, 2, 9, 9]

[1, 1, 1, 2, 9, 9, 9, 9]

[1, 1, 1]

[1, 1, 1]

List Slicing
mylist[startindex : endindex] evaluates to a
sublist of the original list

– mylist[index] evaluates to an element of the original list

• Arguments are like those to the range function
– mylist[start : end : step]

– start index is inclusive, end index is exclusive
– All 3 indices are optional

• Can assign to a slice: mylist[s : e] = yourlist

26

List Slicing: Examples
test_list = ['e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6']

From e2 to the end of the list: test_list[2:]

From beginning up to (but not including) e5: test_list[:5]

Last element: test_list[-1]

Last four elements: test_list[-4:]

Everything except last three elements: test_list[:-3]

Reverse the list: test_list[::-1]

Get a copy of the whole list: test_list[:]

27

List Rearrangement
• list.sort()

– Sort the items of the list, in place.
– “in place” means by modifying the original list, not by creating a new

list.

• list.reverse()
– Reverse the elements of the list, in place.

28

Sorting

hamlet = "to be or not to be that is the
question".split()

print("hamlet:", hamlet)

print("sorted(hamlet):", sorted(hamlet))

print("hamlet:", hamlet)

print("hamlet.sort():", hamlet.sort())
print("hamlet:", hamlet)

print("hamlet.reverse():", hamlet.reverse())
print("hamlet:", hamlet)

29

Sorting
hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is',
'the', 'question']

sorted(hamlet): ['be', 'be', 'is', 'not', 'or', 'question',
'that', 'the', 'to', 'to']

hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is',
'the', 'question']

hamlet.sort(): None

hamlet: ['be', 'be', 'is', 'not', 'or', 'question', 'that',
'the', 'to', 'to']

hamlet.reverse(): None
hamlet: ['to', 'to', 'the', 'that', 'question', 'or', 'not',
'is', 'be', 'be']

30

Customizing the Sort Order

Goal: sort a list of names by last name

names = ["Isaac Newton", "Albert Einstein", "Niels
Bohr", "Marie Curie", "Charles Darwin", "Louis
Pasteur", "Galileo Galilei", "Margaret Mead"]

print("names:", names)

This does NOT work:

print("sorted(names):", sorted(names))

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"

31

sorted(names): ['Albert Einstein', 'Charles
Darwin', 'Galileo Galilei', 'Isaac Newton',
'Louis Pasteur', 'Margaret Mead', 'Marie
Curie', 'Niels Bohr']

Sort Key
A sort key is a different value that you use to sort
a list, instead of the actual values in the list

def last_name(str):
return str.split(" ")[1]

print('last_name("Isaac Newton"):',
last_name("Isaac Newton"))

Two ways to use a sort key:
1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function

32

Create a different list that contains the sort key, sort it, then extract the relevant part:

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
keyed_names is a list of [lastname, fullname] lists
keyed_names = []
for name in names:
keyed_names.append([last_name(name), name])

Take a look at the list you created, it can now be sorted:
print("keyed_names:", keyed_names)
print("sorted(keyed_names):", sorted(keyed_names))

print("sorted(keyed_names, reverse = True):")
print(sorted(keyed_names, reverse = True))

(This works because Python compares two elements that are lists elementwise.)

sorted_keyed_names = sorted(keyed_names, reverse = True)
sorted_names = []

for keyed_name in sorted_keyed_names:
sorted_names.append(keyed_name[1])

print("sorted_names:", sorted_names)

33

1) Create the new list.

2) Sort the list new list.

3) Extract the relevant part.

keyed_names: [['Newton', 'Isaac Newton'], ['Newton', 'Fred Newton'],
['Bohr', 'Niels Bohr']]

sorted(keyed_names): [['Bohr', 'Niels Bohr'], ['Newton', 'Fred Newton'],
['Newton', 'Isaac Newton']]

sorted(keyed_names, reverse = True): [['Newton', 'Isaac Newton'],
['Newton', 'Fred Newton'], ['Bohr', 'Niels Bohr']]

sorted_names: ['Isaac Newton', 'Fred Newton', 'Niels Bohr']

1. Use a sort key to create a new list

2. Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last_name(str):
return str.split(" ")[1]

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
print("sorted(names, key = last_name):")
print(sorted(names, key = last_name))

print("sorted(names, key = last_name, reverse = True):")
print(sorted(names, key = last_name, reverse = True))

print(sorted(names, key = len))

def last_name_len(name):
return len(last_name(name))

print(sorted(names, key = last_name_len))

34

sorted(names, key = last_name): ['Niels Bohr',
'Isaac Newton', 'Fred Newton']

sorted(names, key = last_name, reverse = True):
['Isaac Newton', 'Fred Newton', 'Niels Bohr']

['Niels Bohr', 'Fred Newton', 'Isaac Newton']
['Niels Bohr', 'Isaac Newton', 'Fred Newton']

Sorting: strings vs. numbers

• Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])
[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']

35

Sorting Algorithms Revisited

36

Bubble Sort

• It repeatedly steps through the list to be sorted,
• compares each pair of adjacent items and swaps them if

they are in the wrong order.
• The pass through the list is repeated until no swaps are

needed, which indicates that the list is sorted.
• The algorithm, which is a comparison sort, is named for the

way smaller elements "bubble" to the top of the list.

37

Bubble sort

38

def bubbleSort(alist):
for passnum in range(len(alist)-1,0,-1):

for i in range(passnum):
if alist[i]>alist[i+1]:

temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp

alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)

Insertion sort

39

• maintain a sorted sublist in the
lower positions of the list.

• Each new item is then
“inserted” back into the
previous sublist such that the
sorted sublist is one item larger.

def insertionSort(alist):
for index in range(1,len(alist)):

currentvalue = alist[index]
position = index

while position>0 and alist[position-1]>currentvalue:
alist[position]=alist[position-1]
position = position-1

alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)

40

Insertion Sort

Merge Sort
• Merge sort is a prototypical divide-and-conquer

algorithm.

• It was invented in 1945, by John von Neumann.

• Like many divide-and-conquer algorithms it is most
easily described recursively.
1. If the list is of length 0 or 1, it is already sorted.
2. If the list has more than one element, split the list into

two lists, and use mergesort to sort each of them.
3. Merge the results.

41

Merge Sort
def merge(left, right):

result = []
(i,j) = (0, 0)

while i<len(left) and j<len(right):
if left[i]<right[j]:

result.append(left[i])
i = i + 1

else:
result.append(right[j])
j = j + 1

while i<len(left):
result.append(left[i])
i = i + 1

while j<len(right):
result.append(right[j])
j = j + 1

return result

42

Merge Sort

def mergeSort(L):
if len(L)<2:

return L[:]
else:

middle = len(L)//2
left = mergeSort(L[:middle])
right = mergeSort(L[middle:])
return merge(left, right)

a = mergeSort([2,1,3,4,5,-1,8,6,7])

43

Visit this slide later when
we learned about
recursion.

• Explicitly write out the whole thing:

squares = [0, 1, 4, 9, 16, 25, 36, 49]

• Write a loop to create it:

squares = []
for i in range(8):

squares.append(i*i)

• Write a list comprehension:

squares = [i*i for i in range(8)]

A list comprehension is a concise description of a list
A list comprehension is shorthand for a loop

Three Ways to Define a List

27

Two ways to convert Centigrade to
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

ftemps = []
for c in ctemps:
f = celsius_to_farenheit(c)
ftemps.append(f)

ftemps = [celsius_to_farenheit(c) for c in ctemps]

With a loop:

With a list comprehension:

The comprehension is usually shorter, more readable, and
more efficient.

45

something
that can be
iterated

expression zero or more if clausesfor clause (required)
assigns value to the
variable x

[(x,y) for x in seq1 for y in seq2 if sim(x,y) > threshold]

zero or more
additional
for clauses

46

Syntax of a Comprehension

[(x,y) for x in seq1 for y in seq2 if sim(x,y) > threshold]

result = []
for x in seq1:
for y in seq2:
if sim(x,y) > threshold:
result.append((x,y))

… use result …

47

Semantics of a comprehension

List

[i*2 for i in range(3)]

Set

{ i*2 for i in range(3)}

Dictionary

{ key: value for item in sequence …}
{ i: i*2 for i in range(3)}

48

Types of comprehensions

Goal:
Produce: [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = []
for x in range(10):
cubes.append(x**3)

With a list comprehension:

cubes = [x**3 for x in range(10)]
49

Cubes of the first 10 natural numbers

Goal: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2**i for i in range(11)]

50

Powers of 2, 20 through 210

Goal: Given an input list nums, produce a list of
the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
Þ [4, 2, 6]

[num for num in nums if num % 2 == 0]

51

Even elements of a list

Goal: A list of all possible dice rolls.

With a loop:

rolls = []
for r1 in range(1,7):
for r2 in range(1,7):

rolls.append((r1,r2))

With a list comprehension:

rolls = [(r1,r2) for r1 in range(1,7)
for r2 in range(1,7)]

52

Dice Rolls

Goal: Result list should be a list of 2-tuples:
[(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4),
(5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

[(r1, r2) for r1 in [1,2,3,4,5,6]
for r2 in [1,2,3,4,5,6]

if r1 + r2 > 7]
OR

[(r1, r2) for r1 in range(1, 7)
for r2 in range(8-r1, 7)]

53

All above-average 2-die rolls

Goal: A matrix were each element is the sum of it's row and column
numbers.

With a loop:

matrix = []
for i in range(5):

row = []
for j in range(5):

row.append(i+j)
matrix.append(row)

With a list comprehension:

matrix = [[i+j for j in range(5)] for i in range(5)]
54

Making a Matrix

[[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7],
[4, 5, 6, 7, 8]]

Function 4x2 – 4
With a loop:

num_list = []
for i in range(-10,11):

num_list.append(4*i**2 - 4)

With a list comprehension:
num_list = [4*i**2 - 4 for i in range(-10,11)]

55

Normalize a List
With a loop:

num_list = [6,4,2,8,9,10,3,2,1,3]
total = float(sum(num_list))
for i in range(len(num_list)):

num_list[i] = num_list[i]/float(total)

With a list comprehension:

num_list = [i/total for i in num_list]

56

Dictionary Mapping Integers to
Multiples Under 20
With a loop:

for n in range(1,11):
multiples_list = []
for i in range(1,21):

if i%n == 0:
multiples_list.append(i)

multiples[n] = multiples_list
With a dictionary comprehension:
multiples = {n:[i for i in range(1,21) if i%n == 0]
for n in range(1,11) }

57

{1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20], 2: [2, 4, 6, 8, 10, 12, 14,
16, 18, 20], 3: [3, 6, 9, 12, 15, 18], 4: [4, 8, 12,
16, 20], 5: [5, 10, 15, 20], 6: [6, 12, 18], 7: [7,
14], 8: [8, 16], 9: [9, 18], 10: [10, 20]}

List comprehensions are great, but they can get confusing.
Error on the side of readability.

nums = [n for n in range(100) if
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):

digit_sum = sum([int(j) for j in str(n)])
if digit_sum % 7 == 0:

nums.append(n)

58

A Word of Caution

A common pattern in python

if x > threshold:
flag = True

else:
flag = False

Or

flag = False
if x > threshold:

flag = True

59

Ternary Assignment

A common pattern in python

if x > threshold:
flag = True

else:
flag = False

flag = True if x > threshold else False

Ternary Expression
Three elements

60

Ternary Assignment

flag = True if x > threshold else False

• Only works for single expressions as results.
• Only works for if and else (no elif)

ConditionResult if true Result if false

61

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the_list = []
for i in range(16):

if i%2 == 0:
the_list.append('even')

else:
the_list.append('odd')

or

the_list = []
for i in range(16):

the_list.append('even' if i%2 == 0 else 'odd')

62

Ternary Assignment

Goal: A list of 'odd' or 'even' if that index is odd or even.

the_list = []
for i in range(16):

if i%2 == 0:
the_list.append('even')

else:
the_list.append('odd')

or

the_list =
['even' if i%2 == 0 else 'odd' for i in range(16)]

63

Ternary Assignment

Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

64

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s CSE 140 class

Tuples
• Like strings, tuples are ordered sequences of elements.
• The individual elements can be of any type, and need not be

of the same type as each other.
• Literals of type tuple are written by enclosing a comma-

separated list of elements within parentheses.
• Tuples differ from lists in one hugely important way:

– Lists are mutable. In contrast, tuples are immutable.

• t1 = ()
t2 = (1, 'two', 3)
print(t1)
print(t2)

>> ()
>> (1, 'two', 3)

65

Tuples
• Like strings, tuples can be concatenated, indexed, and sliced.

• t1 = (1, 'two', 3)
t2 = (t1, 3.25)
print(t2)
print((t1 + t2))
print((t1 + t2)[3])
print((t1 + t2)[2:5])

>> ((1, 'two', 3), 3.25)
>> (1, 'two', 3, (1, 'two', 3), 3.25)
>> (1, 'two', 3)
>> (3, (1, 'two', 3), 3.25)

66

Tuples
• A for statement can be used to iterate over the elements of a tuple.
• The following code prints the common divisors of 20 and 100 and then the

sum of all the divisors.

• def findDivisors (n1, n2):
"""Assumes n1 and n2 are positive ints

Returns a tuple containing all common divisors
of n1 & n2"""

divisors = () #the empty tuple
for i in range(1, min (n1, n2) + 1):

if n1%i == 0 and n2%i == 0:
divisors = divisors + (i,)

return divisors

divisors = findDivisors(20, 100)
print(divisors)
total = 0
for d in divisors:

total += d
print(total)

67

>> (1, 2, 4, 5, 10, 20)
>> 42

