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Last time… Control Flow, Functions

2

Repeating yourself

Making decisions

Functions
def dbl_plus(x):

return 2*x + 1

if val < 0:
result = - val

else:
result = val

for f in [30,40,50]:
print(f,(f-32)/9.0*5)

counter = 1
while counter <= n:

s = s + counter
counter += 1

if height > 100:
print("space")

elif height > 50:
print("mesosphere")

elif height > 20:
print("stratosphere")

else:
print("troposphere")



Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries
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Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Ruth Anderson, Michael Ernst and Bill Howe’s  CSE 140 class

We will cover these later.



Data Structures
• A data structure is way of organizing data
– Each data structure makes certain operations 

convenient or efficient
– Each data structure makes certain operations 

inconvenient or inefficient

• Example: What operations are efficient with:
– a file cabinet sorted by date?
– a shoe box?
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An Array is …
• a container which can hold a fix number of items and these 

items should be of the same type. 
– Each item stored in an array is called an element.
– Each location of an element in an array has a numerical index, which is 

used to identify the element.
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Wait for Understanding Data lecture 
(Week 13) to learn more about arrays.
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A Collection Groups Similar Things
• List: ordered
• Set: unordered, no duplicates
• Tuple: unmodifiable list
• Dictionary:  maps from values to values

Example: word → definition
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What is a List?
• A list is an ordered sequence of values, where each 

value is identified by an index. 

• What operations should a list support efficiently and 
conveniently?
– Creation
– Querying/Lookup
– Mutation
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List Creation
• Use square brackets to specify a list.
• Separate each element with a comma.

a = [3, 4, 5]

b = [ 5, 3, 'hi' ]

c = [ 4, 'a', a ]

d = [ 3, 1, 2*2, 1, 10/2, 10-1 ]

e = [] # empty list
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List Creation: Example - 1

L = ['I did it all', 4, 'love'] 

for i in range(len(L)):
print(L[i])

>> I did it all
>> 4
>> love
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List Creation: Example - 2
Techs = ['MIT', 'Caltech']
Ivys = ['Harvard', 'Yale', 'Brown']
Univs = [Techs, Ivys]
Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']]

print('Univs =', Univs) 
print('Univs1 =', Univs1) 
print(Univs == Univs1)

>> Univs = [['MIT','Caltech'],['Harvard','Yale','Brown']] 
>> Univs1 = [['MIT','Caltech'],['Harvard','Yale','Brown']] 
>> True
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Index 
expression

How to Evaluate a List Expression

• [a, b, c, d] list creation
– To evaluate:

• evaluate each element to a value, from left to right
• make a list of the values

– The elements can be arbitrary values, including lists
• ["a", 3, 3.14*r*r, fahr_to_cent(-40), [3+4, 5*6]]

• a[b] list indexing or dereferencing
– To evaluate:

• evaluate the list expression to a value
• evaluate the index expression to a value
• if the list value is not a list, execution terminates with an error
• if the element is not in range (not a valid index), execution terminates 

with an error
• the value is the given element of the list value (counting from zero)

List 
expression

Same tokens “[]” 
with two distinct
meanings
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List Expression Examples

What does this mean (or is it an error)?

["four", "score", "and", "seven", "years"][2]

["four", "score", "and", "seven", "years"][0,2,3]

["four", "score", "and", "seven", "years"][[0,2,3]]

["four", "score", "and", "seven", "years"][[0,2,3][1]]
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List Expression Examples
>>> ["four", "score", "and", "seven", "years"][2]
'and’

>>> ["four", "score", "and", "seven", "years"][0,2,3]
TypeError: list indices must be integers or slices, not tuple

>>> ["four", "score", "and", "seven", "years"][[0,2,3]]
TypeError: list indices must be integers or slices, not list

>>> ["four", "score", "and", "seven", "years"][[0,2,3][1]]
'and'
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List Lookup
• Extracting part of the list:
– Single element:  mylist[index]
– Sublist (“slicing”):  mylist[startidx : endidx]

• Find/lookup in a list
– x in mylist
• Evaluates to a boolean value

– mylist.index(x)
• Return the int index in the list of the first item whose value is x.  

It is an error if there is no such item.

– list.count(x)
• Return the number of times x appears in the list.
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List Lookup: Exercise
def index(somelist, value):

"""Return the position of the first occurrence of 
the element value in the list somelist.
Return None if value does not appear in 
somelist."""

i = 0
for c in somelist:
if c == value:
return i

i = i + 1
return None
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gettysburg = ["four", "score", "and", 
”seven", "years", "ago"]

index(gettysburg, "and") # 2
index(gettysburg, "years”) # 4
gettysburg.count('seven') # 1



List Mutation
• Insertion
• Removal
• Replacement
• Rearrangement

19



List Insertion
• mylist.append(x)

– Extend the list by inserting x at the end

• mylist.extend(L)
– Extend the list by appending all the items in the argument list

• mylist.insert(i, x)
– Insert an item before a given position.
– a.insert(0, x) inserts at the front of the list
– a.insert(len(a), x) is equivalent to a.append(x)
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List Insertion: Examples
Python statement Content of list1

>>> list1 = [1, 2, 3] [1, 2, 3]

>>> list1.append(4) [1, 2, 3, 4]

>>> list1.insert(2, 5) [1, 2, 5, 3, 4]

>>> list2 = [10, 20]
>>> list1.extend(list2) [1, 2, 5, 3, 4, 10, 20]

>>> list1.append(list2) [1, 2, 5, 3, 4, 10, 20, [10, 20]]
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Content of list1

[1, 2, 3]

[1, 2, 3, 4]

[1, 2, 5, 3, 4]

[1, 2, 5, 3, 4, 10, 20]

[1, 2, 5, 3, 4, 10, 20, [10, 20]]

>>> list1[7]
[10, 20]
>>> list1[7][0]
10
>>> list1[7][1]
20



Notation from the Python Library Reference:
The square brackets around the parameter, “[i]”, means the argument is optional.
It does not mean you should type square brackets at that position.

List Removal
• list.remove(x)

– Remove the first item from the list whose value is x
– It is an error if there is no such item

• list.pop([i])
– Remove the item at the given position in the list, and return it.
– If no index is specified, a.pop() removes and returns the last item in the list.
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List Removal - Examples

23

Python statement

>>> list1 = [1, 2, 3]

>>> list1.remove(2)

>>> list2 = list1.copy()
>>> list1.extend(list2)

>>> list1.remove(3)

>>> list1.pop()

Content of list1

[1, 2, 3]

[1, 3]

[1, 3, 1, 3]

[1, 1, 3]

[1, 1]

How can you remove 
all occurences of an 
element?



List Replacement
• mylist[index] = newvalue

• mylist[start : end] = newsublist
– Can change the length of the list
– start is inclusive, end is not
– mylist[ start : end ] = [] # removes multiple elements
– a[len(a):] = L # is equivalent to a.extend(L)
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List Replacement - Examples
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Python statement

>>> list1 = [1, 2, 3]

>>> list1[len(list1)-1] = 9

>>> list2 = list1
>>> list1[1:2] = list2

>>> list1[1:3] = list2

>>> list2[3:8] = []

>>> list2 = [5, 6]

Content of list1

[1, 2, 3]

[1, 2, 9]

[1, 1, 2, 9, 9]

[1, 1, 1, 2, 9, 9, 9, 9]

[1, 1, 1]

[1, 1, 1]



List Slicing
mylist[startindex : endindex] evaluates to a 
sublist of the original list

– mylist[index] evaluates to an element of the original list

• Arguments are like those to the range function
– mylist[start : end : step]

– start index is inclusive, end index is exclusive
– All 3 indices are optional

• Can assign to a slice:  mylist[s : e] = yourlist
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List Slicing: Examples
test_list = ['e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6']

From e2 to the end of the list: test_list[2:]

From beginning up to (but not including) e5: test_list[:5]

Last element: test_list[-1]

Last four elements: test_list[-4:]

Everything except last three elements: test_list[:-3]

Reverse the list: test_list[::-1]

Get a copy of the whole list: test_list[:]
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List Rearrangement
• list.sort()

– Sort the items of the list, in place.
– “in place” means by modifying the original list, not by creating a new 

list.

• list.reverse()
– Reverse the elements of the list, in place.
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Sorting

hamlet = "to be or not to be that is the 
question".split()

print("hamlet:", hamlet)

print("sorted(hamlet):", sorted(hamlet))

print("hamlet:", hamlet)

print("hamlet.sort():", hamlet.sort())
print("hamlet:", hamlet)

print("hamlet.reverse():", hamlet.reverse())
print("hamlet:", hamlet)
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Sorting
hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is', 
'the', 'question']

sorted(hamlet): ['be', 'be', 'is', 'not', 'or', 'question', 
'that', 'the', 'to', 'to']

hamlet: ['to', 'be', 'or', 'not', 'to', 'be', 'that', 'is', 
'the', 'question']

hamlet.sort(): None

hamlet: ['be', 'be', 'is', 'not', 'or', 'question', 'that', 
'the', 'to', 'to']

hamlet.reverse(): None
hamlet: ['to', 'to', 'the', 'that', 'question', 'or', 'not', 
'is', 'be', 'be']
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Customizing the Sort Order

Goal: sort a list of names by last name

names = ["Isaac Newton", "Albert Einstein", "Niels
Bohr", "Marie Curie", "Charles Darwin", "Louis 
Pasteur", "Galileo Galilei", "Margaret Mead"]

print("names:", names)

This does NOT work:

print("sorted(names):", sorted(names))

When sorting, how should we compare these names?

"Niels Bohr"
"Charles Darwin"
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sorted(names): ['Albert Einstein', 'Charles 
Darwin', 'Galileo Galilei', 'Isaac Newton', 
'Louis Pasteur', 'Margaret Mead', 'Marie 
Curie', 'Niels Bohr']



Sort Key
A sort key is a different value that you use to sort 
a list, instead of the actual values in the list

def last_name(str):
return str.split(" ")[1]

print('last_name("Isaac Newton"):', 
last_name("Isaac Newton"))

Two ways to use a sort key:
1. Create a new list containing the sort key, and then sort it
2. Pass a key function to the sorted function
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Create a different list that contains the sort key, sort it, then extract the relevant part:

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
# keyed_names is a list of [lastname, fullname] lists
keyed_names = [] 
for name in names:
keyed_names.append([last_name(name), name])

Take a look at the list you created, it can now be sorted:
print("keyed_names:", keyed_names)
print("sorted(keyed_names):", sorted(keyed_names))

print("sorted(keyed_names, reverse = True):")
print(sorted(keyed_names, reverse = True))

(This works because Python compares two elements that are lists elementwise.)

sorted_keyed_names = sorted(keyed_names, reverse = True)
sorted_names = []

for keyed_name in sorted_keyed_names:
sorted_names.append(keyed_name[1])

print("sorted_names:", sorted_names)
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1) Create the new list.

2) Sort the list new list.

3) Extract the relevant part.

keyed_names: [['Newton', 'Isaac Newton'], ['Newton', 'Fred Newton'], 
['Bohr', 'Niels Bohr']]

sorted(keyed_names): [['Bohr', 'Niels Bohr'], ['Newton', 'Fred Newton'], 
['Newton', 'Isaac Newton']]

sorted(keyed_names, reverse = True): [['Newton', 'Isaac Newton'], 
['Newton', 'Fred Newton'], ['Bohr', 'Niels Bohr']]

sorted_names: ['Isaac Newton', 'Fred Newton', 'Niels Bohr']

1. Use a sort key to create a new list



2. Use a sort key as the key argument

Supply the key argument to the sorted function or the sort function

def last_name(str):
return str.split(" ")[1]

names = ["Isaac Newton", "Fred Newton", "Niels Bohr"]
print("sorted(names, key = last_name):")
print(sorted(names, key = last_name))

print("sorted(names, key = last_name, reverse = True):")
print(sorted(names, key = last_name, reverse = True))

print(sorted(names, key = len))

def last_name_len(name):
return len(last_name(name))

print(sorted(names, key = last_name_len))
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sorted(names, key = last_name): ['Niels Bohr', 
'Isaac Newton', 'Fred Newton']

sorted(names, key = last_name, reverse = True): 
['Isaac Newton', 'Fred Newton', 'Niels Bohr']

['Niels Bohr', 'Fred Newton', 'Isaac Newton']
['Niels Bohr', 'Isaac Newton', 'Fred Newton']



Sorting:  strings vs. numbers

• Sorting the powers of 5:

>>> sorted([125, 5, 3125, 625, 25])
[5, 25, 125, 625, 3125]

>>> sorted(["125", "5", "3125", "625", "25"])
['125', '25', '3125', '5', '625']
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Sorting Algorithms Revisited
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Bubble Sort

• It repeatedly steps through the list to be sorted, 
• compares each pair of adjacent items and swaps them if 

they are in the wrong order. 
• The pass through the list is repeated until no swaps are 

needed, which indicates that the list is sorted. 
• The algorithm, which is a comparison sort, is named for the 

way smaller elements "bubble" to the top of the list. 

37



Bubble sort
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def bubbleSort(alist):
for passnum in range(len(alist)-1,0,-1):

for i in range(passnum):
if alist[i]>alist[i+1]:

temp = alist[i]
alist[i] = alist[i+1]
alist[i+1] = temp

alist = [54,26,93,17,77,31,44,55,20]
bubbleSort(alist)
print(alist)



Insertion sort

39

• maintain a sorted sublist in the 
lower positions of the list. 

• Each new item is then 
“inserted” back into the 
previous sublist such that the 
sorted sublist is one item larger.



def insertionSort(alist):   
for index in range(1,len(alist)):     

currentvalue = alist[index]     
position = index

while position>0 and alist[position-1]>currentvalue:         
alist[position]=alist[position-1]         
position = position-1     

alist[position]=currentvalue

alist = [54,26,93,17,77,31,44,55,20]
insertionSort(alist)
print(alist)
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Insertion Sort



Merge Sort
• Merge sort is a prototypical divide-and-conquer 

algorithm. 

• It was invented in 1945, by John von Neumann.

• Like many divide-and-conquer algorithms it is most 
easily described recursively.
1. If the list is of length 0 or 1, it is already sorted.
2. If the list has more than one element, split the list into 

two lists, and use mergesort to sort each of them.
3. Merge the results.
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Merge Sort
def merge(left, right):

result = []
(i,j) = (0, 0)

while i<len(left) and j<len(right):
if left[i]<right[j]:

result.append(left[i])
i = i + 1

else:
result.append(right[j])
j = j + 1

while i<len(left):
result.append(left[i])
i = i + 1

while j<len(right):
result.append(right[j])
j = j + 1

return result
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Merge Sort

def mergeSort(L):
if len(L)<2:

return L[:]
else:

middle = len(L)//2
left = mergeSort(L[:middle])
right = mergeSort(L[middle:])
return merge(left, right)

a = mergeSort([2,1,3,4,5,-1,8,6,7])
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Visit this slide later when 
we learned about 
recursion.



• Explicitly write out the whole thing:

squares = [0, 1, 4, 9, 16, 25, 36, 49]

• Write a loop to create it:

squares = []
for i in range(8):

squares.append(i*i)

• Write a list comprehension:

squares = [i*i for i in range(8)]

A list comprehension is a concise description of a list
A list comprehension is shorthand for a loop

Three Ways to Define a List

27



Two ways to convert Centigrade to 
Fahrenheit

ctemps = [17.1, 22.3, 18.4, 19.1]

ftemps = []
for c in ctemps:
f = celsius_to_farenheit(c)
ftemps.append(f)

ftemps = [celsius_to_farenheit(c) for c in ctemps]

With a loop:

With a list comprehension:

The comprehension is usually shorter, more readable, and 
more efficient.
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something 
that can be 
iterated

expression zero or more if clausesfor clause (required)
assigns value to the 
variable x

[(x,y) for x in seq1 for y in seq2 if sim(x,y) > threshold]

zero or more 
additional 
for clauses

46

Syntax of a Comprehension



[(x,y) for x in seq1 for y in seq2 if sim(x,y) > threshold]

result = []
for x in seq1:
for y in seq2:
if sim(x,y) > threshold:
result.append( (x,y) )

… use result …

47

Semantics of a comprehension



List

[ i*2 for i in range(3) ]

Set

{ i*2 for i in range(3)}

Dictionary

{ key: value for item in sequence …}
{ i: i*2 for i in range(3)}

48

Types of comprehensions



Goal:
Produce:  [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

With a loop:

cubes = [] 
for x in range(10): 
cubes.append(x**3) 

With a list comprehension:

cubes = [x**3 for x in range(10)]
49

Cubes of the first 10 natural numbers



Goal:  [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

[2**i for i in range(11)]
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Powers of 2, 20 through 210



Goal:  Given an input list nums, produce a list of 
the even numbers in nums

nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
Þ [4, 2, 6]

[num for num in nums if num % 2 == 0]
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Even elements of a list



Goal: A list of all possible dice rolls.

With a loop:

rolls = [] 
for r1 in range(1,7): 
for r2 in range(1,7):

rolls.append((r1,r2))

With a list comprehension:

rolls = [ (r1,r2) for r1 in range(1,7) 
for r2 in range(1,7)]
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Dice Rolls



Goal: Result list should be a list of 2-tuples:
[(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), 
(5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)]

[(r1, r2) for r1 in [1,2,3,4,5,6]
for r2 in [1,2,3,4,5,6]

if r1 + r2 > 7]
OR

[(r1, r2) for r1 in range(1, 7)
for r2 in range(8-r1, 7)]
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All above-average 2-die rolls



Goal: A matrix were each element is the sum of it's row and column 
numbers.

With a loop:

matrix = [] 
for i in range(5):

row = [] 
for j in range(5):

row.append(i+j)
matrix.append(row)

With a list comprehension:

matrix = [[i+j for j in range(5)] for i in range(5)]
54

Making a Matrix

[[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5], 
[2, 3, 4, 5, 6], 
[3, 4, 5, 6, 7], 
[4, 5, 6, 7, 8]]



Function 4x2 – 4 
With a loop:

num_list = [] 
for i in range(-10,11):  

num_list.append(4*i**2 - 4) 

With a list comprehension:
num_list = [4*i**2 - 4 for i in range(-10,11)]
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Normalize a List 
With a loop:

num_list = [6,4,2,8,9,10,3,2,1,3]
total = float(sum(num_list)) 
for i in range(len(num_list)): 

num_list[i] = num_list[i]/float(total)

With a list comprehension:

num_list = [i/total for i in num_list]
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Dictionary Mapping Integers to 
Multiples Under 20 
With a loop:

for n in range(1,11): 
multiples_list = [] 
for i in range(1,21): 

if i%n == 0: 
multiples_list.append(i) 

multiples[n] = multiples_list
With a dictionary comprehension:
multiples = {n:[i for i in range(1,21) if i%n == 0] 
for n in range(1,11) }
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{1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20], 2: [2, 4, 6, 8, 10, 12, 14, 
16, 18, 20], 3: [3, 6, 9, 12, 15, 18], 4: [4, 8, 12, 
16, 20], 5: [5, 10, 15, 20], 6: [6, 12, 18], 7: [7, 
14], 8: [8, 16], 9: [9, 18], 10: [10, 20]}



List comprehensions are great, but they can get confusing.  
Error on the side of readability.

nums = [n for n in range(100) if 
sum([int(j) for j in str(n)]) % 7 == 0]

nums = []
for n in range(100):

digit_sum = sum([int(j) for j in str(n)])
if digit_sum % 7 == 0:

nums.append(n)
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A Word of Caution



A common pattern in python

if x > threshold:
flag = True

else: 
flag = False

Or

flag = False
if x > threshold:

flag = True 

59

Ternary Assignment



A common pattern in python

if x > threshold:
flag = True

else: 
flag = False

flag = True if x > threshold else False

Ternary Expression
Three elements 

60

Ternary Assignment



flag = True if x > threshold else False

• Only works for single expressions as results.
• Only works for if and else (no elif)

ConditionResult if true Result if false
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Ternary Assignment



Goal: A list of 'odd' or 'even' if that index is odd or even.

the_list = []
for i in range(16):

if i%2 == 0:
the_list.append('even')

else:
the_list.append('odd')

or

the_list = []
for i in range(16):

the_list.append('even' if i%2 == 0 else 'odd')
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Ternary Assignment



Goal: A list of 'odd' or 'even' if that index is odd or even.

the_list = []
for i in range(16):

if i%2 == 0:
the_list.append('even')

else:
the_list.append('odd')

or

the_list = 
['even' if i%2 == 0 else 'odd' for i in range(16)]
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Ternary Assignment



Lecture Overview
• Arrays
• Collections
– Lists
– Tuples
– Sets
– Dictionaries
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Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Ruth Anderson, Michael Ernst and Bill Howe’s  CSE 140 class



Tuples
• Like strings, tuples are ordered sequences of elements. 
• The individual elements can be of any type, and need not be 

of the same type as each other. 
• Literals of type tuple are written by enclosing a comma-

separated list of elements within parentheses. 
• Tuples differ from lists in one hugely important way: 

– Lists are mutable. In contrast, tuples are immutable. 

• t1 = ()
t2 = (1, 'two', 3) 
print(t1)
print(t2) 

>> ()
>> (1, 'two', 3)
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Tuples
• Like strings, tuples can be concatenated, indexed, and sliced. 

• t1 = (1, 'two', 3) 
t2 = (t1, 3.25) 
print(t2)
print((t1 + t2)) 
print((t1 + t2)[3]) 
print((t1 + t2)[2:5])

>> ((1, 'two', 3), 3.25)
>> (1, 'two', 3, (1, 'two', 3), 3.25)
>> (1, 'two', 3)
>> (3, (1, 'two', 3), 3.25)
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Tuples
• A for statement can be used to iterate over the elements of a tuple. 
• The following code prints the common divisors of 20 and 100 and then the 

sum of all the divisors. 

• def findDivisors (n1, n2):
"""Assumes n1 and n2 are positive ints

Returns a tuple containing all common divisors 
of n1 & n2""" 

divisors = () #the empty tuple
for i in range(1, min (n1, n2) + 1):

if n1%i == 0 and n2%i == 0: 
divisors = divisors + (i,)

return divisors

divisors = findDivisors(20, 100) 
print(divisors)
total = 0
for d in divisors:       

total += d   
print(total)
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>> (1, 2, 4, 5, 10, 20)
>> 42


