
Lecture #08 – Sets, Dictionaries, File I/O

Fuat Akal, Aykut Erdem & Erkut Erdem // Fall 2019

BBM 101
Introduction to
Programming I

Image: Unsplash//@jankolar

Last time… Higher-Order Functions

2

Lambda Expressions Versus Def Statements

square = lambda x: x * x def square(x):
 return x * xVS

!13

The built-in function map(f, seq)
squares = map(lambda x : x ** 2, range(11))

The built-in function filter(f, seq)
primes = filter(is_prime, range(11))

def make_adder(n):
return lambda k: n + k

Function currying

Finding common structure allows for
shared implementation!

Shape:

Area:
r

r r

r2 ! · r2 3 3
2 · r21 ·

Lecture Overview
• Collections
– Lists

– Tuples

– Sets

– Dictionaries

• File I/O

3

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Ruth Anderson, Michael Ernst and Bill Howe’s University of Washington CSE 140 class,
—Ana Bell, Eric Grimson, John Guttag’s MIT 6.0001 class
—Keith Levin’s University of Michigan STATS 507 class

Recall: Data Structures
• A data structure is way of organizing data
– Each data structure makes certain operations

convenient or efficient
– Each data structure makes certain operations

inconvenient or inefficient

Recall: Collections
• List: ordered
• Tuple: unmodifiable list
• Set: unordered, no duplicates
• Dictionary: maps from values to values

Example: word → definition

Lecture Overview
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

• File I/O

6

Sets
• Mathematical set: a collection of values, without duplicates

or order

• Order does not matter
{ 1, 2, 3 } == { 3, 2, 1 }

• No duplicates
{ 3, 1, 4, 1, 5 } == { 5, 4, 3, 1 }

• For every data structure, ask:
– How to create
– How to query (look up) and perform other operations

• (Can result in a new set, or in some other datatype)
– How to modify

Answer: http://docs.python.org/3/library/stdtypes.html#set

3

2

1

1

4

3

5

7

http://docs.python.org/3/library/stdtypes.html

Creating a Set
• Construct from a list:

odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

8

Set Operations
odd = set([1, 3, 5])
prime = set([2, 3, 5])
• membership Î Python: in 4 in prime Þ False
• union È Python: | odd | prime Þ { 1, 2, 3, 5 }
• intersection Ç Python: & odd & prime Þ { 3, 5 }
• difference \ or - Python: - odd – prime Þ { 1 }

Think in terms of set operations,
not in terms of iteration and element operations

– Shorter, clearer, less error-prone, faster

Although we can do iteration over sets:
iterates over items in arbitrary order
for item in myset:
…

But we cannot index into a set to access a specific element.

9

Modifying a Set
• Add one element to a set:

myset.add(newelt)
myset = myset | set([newelt])

• Remove one element from a set:
myset.remove(elt) # elt must be in myset or raises err
myset.discard(elt)# never errs

What would this do?
myset = myset – set([newelt])

• Choose and remove some element from a set:
myset.pop()

10

Practice with Sets
z = set([5,6,7,8])
y = set([1,2,3,"foo",1,5])
k = z & y
j = z | y
m = y – z
z.add(9)

11

z: {8, 9, 5, 6, 7}
y: {1, 2, 3, 5, 'foo'}
k: {5}
j: {1, 2, 3, 5, 6, 7, 8, 'foo'}
m: {1, 2, 3, 'foo'}

List vs. Set Operations (1)
Find the common elements in both list1 and list2:
out1 = []
for i in list2:

if i in list1:
out1.append(i)

or

out1 = [i for i in list2 if i in list1]

Find the common elements in both set1 and set2:
set1 & set2

Much shorter, clearer, easier to write!

12

List vs. Set Operations (2)
Find the elements in either list1 or list2 (or both)
(without duplicates):

out2 = list(list1) # make a copy
for i in list2:

if i not in list1: # don’t append elements
out2.append(i) # already in out2

or
out2 = list1+list2
for i in out1: # out1 (from previous example),

out2.remove(i) # common elements in both lists
Remove common elements

Find the elements in either set1 or set2 (or both):
set1 | set2

13

List vs. Set Operations (3)

Find the elements in either list but not in both:
out3 = []
for i in list1+list2:

if i not in list1 or i not in list2:
out3.append(i)

Find the elements in either set but not in both:
set1 ^ set2 # symmetric difference

14

• Set elements must be immutable values
– int, float, bool, string, tuple
– not: list, set, dictionary

• Goal: only set operations change the set
– after “myset.add(x)”, x in mysetÞ True
– y in myset always evaluates to the same value
Both conditions should hold until myset itself is changed

15

Set Elements

• Mutable elements can violate these goals

list1 = ["a", "b"]
list2 = list1
list3 = ["a", "b"]
myset = { list1 } Ü Hypothetical; actually illegal in Python

TypeError: unhashable type: 'list'
list1 in myset Þ True
list3 in myset Þ True
list2.append("c") Ü modifying myset “indirectly” would

lead to different results
list1 in myset Þ ???
list3 in myset Þ ???

16

Set Elements

Lecture Overview
• Collections
– Lists
– Tuples
– Sets
– Dictionaries

• File I/O

17

Dictionaries
• Python dictionary generalizes lists

– list(): indexed by integers
– dict(): indexed by (almost) any data

type

• Dictionary contains:
– a set of indices, called keys,
– a set of values (called values)

• Each key associated with one (and
only one) value key-value pairs,
sometimes called items

• Like a function f: keys -> values

18

dictionary

keys values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

Dictionaries
• Dictionary maps keys to values.

• E.g., ‘cat’ mapped to the
float 2.718

• In practice, keys are often all of
the same type, because they
all represent a similar kind of
object

Example: might use a
dictionary to map HU-CENG
unique names to people

19

dictionary

keys values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

Accessing a Dictionary

>> example_dict[‘goat’]
35

>> example_dict[‘cat’]
2.718

>> example_dict[‘dog’]
2.718

>> example_dict[3.1415]
[1,2,3]

>> example_dict[12]
‘one’

20

dictionary

keys values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

• Access the value associated to
key x by dictionary[x]

Accessing a Dictionary
>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

21

Example:
Hacettepe University
IT wants to store the
correspondence btw
the usernames
(HU-CENG IDs) of
students to their
actual names. A
dictionary is a very
natural data
structure for this.

Creating and populating a dictionary

22

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Create an empty
dictionary (i.e., a
dictionary with no
key-value pairs
stored in it. This
should look familiar,
since it is very similar
to list creation.

Creating and populating a dictionary

23

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Populate the
dictionary. We are
adding four key-value
pairs, corresponding
to four users in the
system.

Creating and populating a dictionary

24

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Retrieve the value
associated with a
key. This is called
lookup.

Creating and populating a dictionary

25

>>> huceng2name = dict()

>>> huceng2name[‘aeinstein’] = ‘Albert Einstein’

>>> huceng2name[‘kyfan’] = ‘Ky Fan’

>>> huceng2name[‘enoether’] = ‘Emmy Noether’

>>> huceng2name[‘cshannon’] = ‘Claude Shannon’

>>> huceng2name[‘cshannon’]

’Claude Shannon’

>>> huceng2name[‘enoether’]

‘Emmy Noether’

>>> huceng2name[‘enoether’] = ‘Amalie Emmy Noether’

>>> huceng2name[‘enoether’]

‘Amalie Emmy Noether’

Emmy Noether’s
actual legal name
was Amalie Emmy
Noether, so we have
to update her record.
Note that updating is
syntactically the
same as initial
population of the
dictionary.

Displaying Items

26

>>> example_dic

{3.1415: [1, 2, 3], 12: ‘one’, ‘cat’: 2.718, ‘dog’: 2.718, ‘goat’: 35}

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> huceng2name = {‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> huceng2name[‘kyfan’]

‘Ky Fan’

Printing a dictionary lists its items
(key-value pairs), in this rather odd
format...

… we can also use that format
to create a new dictionary.

Note: The order in which items are printed isn’t always
the same, and isn’t predictable. This is due to how
dictionaries are stored in memory. More on this soon.

Dictionaries have a length

27

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> len(huceng2name)

4

>>> d = dict()

>>> len(d)

0

Length of a dictionary is just the
number of items.

Empty dictionary has length 0.

Checking set membership

28

• Suppose a new student, Andrey Kolmogorov is enrolling at HU-CENG. We need
to give him a unique name, but we want to make sure we aren’t assigning a
name that’s already taken.

>>> huceng2name

{‘aeinstein’: ‘Albert Einstein’,

‘cshannon’: ‘Claude Shannon’,

‘enoether’: ‘Amalie Emmy Noether’,

‘kyfan’: ‘Ky Fan’}

>>> ‘akolmogorov’ in huceng2name

False

>>> ‘enoether’ in huceng2name
True

Dictionaries support checking whether
or not an element is present as a key,
similar to how lists support checking
whether or not an element is present
in the list.

Checking set membership: Fast and Slow
from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

29

Example: I have a large collection of
phone numbers, and I need to check
whether or not a given number appears
in the collection. Both dictionaries and
lists support membership checks of this
sort, but it turns out that dictionaries are
much better suited to the job.

Lists and dictionaries provide our first
example of how certain data structures
are better for certain tasks than others.

Checking set membership: Fast and Slow

30

from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

This block of code generates 1000000
random “phone numbers”, and creates
(1) a list of all the numbers and (2) a
dictionary whose keys are all the
numbers.

Checking set membership: Fast and Slow

31

from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

The random module supports a bunch
of random number generation
operations.
https://docs.python.org/3/library/rand
om.html

https://docs.python.org/3/library/random.html

Checking set membership: Fast and Slow

32

from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

Initialize a list (of all zeros) and an
empty dictionary.

Checking set membership: Fast and Slow

33

from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

Generate listlen random numbers,
writing them to both the list and the
dictionary.

Checking set membership: Fast and Slow

34

from random import randint
listlen = 1000000
list_of_numbers = listlen*[0]
dict_of_numbers = dict()
for i in range(listlen)

n = randint(1000000, 9999999)
list_of_numbers[i] = n
dict_of_numbers[n] = 1

>>> 8675309 in list_of_numbers
False

>>> 1240893 in list_of_numbers
True

>>> 8675309 in dict_of_numbers
False

>>> 1240893 in dict_of_numbers
True

This is slow

This is fast

Checking set membership: Fast and Slow

35

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time
>>> start_time = time.time()
>>> 8675309 in list_of_numbers
>>> time.time() – start_time()
0.10922789573669434

>>> start_time = time.time()
>>> 8675309 in dict_of_numbers
>>> time.time() – start_time()
0.0002219676971435547

The time module supports accessing the
system clock, timing functions, and related
operations.
https://docs.python.org/3/library/time.html
Timing parts of your program to find where
performance can be improved is called
profiling your code. Python provides some
built-in tools for more profiling, which we’ll
discuss later in the course, if time allows.
https://docs.python.org/3/library/profile.html

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/profile.html

Checking set membership: Fast and Slow

36

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time
>>> start_time = time.time()
>>> 8675309 in list_of_numbers
>>> time.time() – start_time()
0.10922789573669434

>>> start_time = time.time()
>>> 8675309 in dict_of_numbers
>>> time.time() – start_time()
0.0002219676971435547

To see how long an operation takes, look at
what time it is, perform the operation, and
then look at what time it is again. The time
difference is how long it took to perform the
operation.

Warning: this can be influenced by other processes
running on your computer. See documentation for
ways to mitigate that inaccuracy.

Checking set membership: Fast and Slow

37

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time
>>> start_time = time.time()
>>> 8675309 in list_of_numbers
>>> time.time() – start_time()
0.10922789573669434

>>> start_time = time.time()
>>> 8675309 in dict_of_numbers
>>> time.time() – start_time()
0.0002219676971435547

Checking membership in the dictionary is
orders of magnitude faster! Why should
that be?

Checking set membership: Fast and Slow

38

• Let’s get a more quantitative look at the difference in speed
between lists and dicts.

>>> import time
>>> start_time = time.time()
>>> 8675309 in list_of_numbers
>>> time.time() – start_time()
0.10922789573669434

>>> start_time = time.time()
>>> 8675309 in dict_of_numbers
>>> time.time() – start_time()
0.0002219676971435547

Python compares x against each element in
the list until it finds a match or hits the end
of the list. So this takes time linear in the
length of the list.

The time difference is due to how the in
operation is implemented for lists and
dictionaries.

Python uses a hash table. For now, it suffices
to know that this lets us check if x is in the
dictionary in (almost) the same amount of
time, regardless of how many items are in
the dictionary.

Common pattern: dictionary as counter
• Example: counting word frequencies

• Naïve idea: keep one variable to keep track of each
word We’re gonna need a lot of variables!

• Better idea: use a dictionary, keep track of only the
words we see

39

Traversing a dictionary
• Suppose we have a dictionary representing word counts...
• ...and now we want to display the counts for each word.

>>> for w in wdcnt:
print(w, wdcnt[w])

half 3
a 3
league 3
onward 1
all 1
in 1
the 2
valley 1
of 1
death 1
rode 1
six 1
hundred 1

40

Traversing a dictionary yields the keys, in no
particular order. Typically, you’ll get them in
the order they were added, but this is not
guaranteed, so don’t rely on it.

Common pattern: Reverse Lookup and Inversion

41

>>> huceng2name
{‘aeinstein’: ‘Albert Einstein’,
‘cshannon’: ‘Claude Shannon’,
‘enoether’: ‘Amalie Emmy Noether’,
‘kyfan’: ‘Ky Fan’}

>>> name2huceng = dict()
for uname in huceng2name:

truename = huceng2name[uname]
name2huceng[truename] = uname

>>> name2huceng
{‘Albert Einstein’: ‘aeinstein’,
‘Amalie Emmy Noether’: ‘enoether’,
‘Claude Shannon’: ‘cshannon’,
‘Ky Fan’: ‘kyfan’}

• Returning to our example, what if I want to map a (real) name to a uniqname?
E.g., I want to look up Emmy Noether’s username from her real name

The keys of huceng2name are the values of
name2huceng and vice versa. We say that
name2huceng is the reverse lookup table
(or the inverse) for huceng2name.

Common pattern: Reverse Lookup and Inversion

42

>>> huceng2name
{‘aeinstein’: ‘Albert Einstein’,
‘cshannon’: ‘Claude Shannon’,
‘enoether’: ‘Amalie Emmy Noether’,
‘kyfan’: ‘Ky Fan’}

>>> name2huceng = dict()
for uname in huceng2name:

truename = huceng2name[uname]
name2huceng[truename] = uname

>>> name2huceng
{‘Albert Einstein’: ‘aeinstein’,
‘Amalie Emmy Noether’: ‘enoether’,
‘Claude Shannon’: ‘cshannon’,
‘Ky Fan’: ‘kyfan’}

• Returning to our example, what if I want to map a (real) name to a uniqname?
E.g., I want to look up Emmy Noether’s username from her real name

The keys of huceng2name are the values of
name2huceng and vice versa. We say that
name2huceng is the reverse lookup table
(or the inverse) for huceng2name.

What if there are duplicate values? In the
word count example, more than one word
appears 2 times in the text... How do we
deal with that?

Keys must be hashable!
>>> d = dict()
>>> animals = [‘cat’, ‘dog’, ‘bird’, ‘goat’]
>>> d[animals] = 1.61803

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

43

From the documentation: “All of Python’s immutable
built-in objects are hashable; mutable containers (such
as lists or dictionaries) are not.”
https://docs.python.org/3/glossary.html#term-hashable

https://docs.python.org/3/glossary.html

Dictionaries can have dictionaries as values!

• Suppose we want to map pairs (x,y) to numbers.

>>> times_table = dict()

>>> for x in range(1,13):
if x not in times_table:

times_table[x] = dict()
for y in range(1,13):

times_table[x][y] = x*y

>>> times_table[7][9]
63

44

Note: We’re putting this if-statement here to
illustrate that in practice, we often don’t know
the order in which we’re going to observe the
objects we want to add to the dictionary.

Each value of x maps to another
dictionary.

Lecture Overview
• Collections
– Lists
– Sets
– Tuples
– Dictionaries

• File I/O

45

Persistent Data
• So far, we only know how to write “transient”

programs
– Data disappears once the program stops running

• Files allow for persistence
– Work done by a program can be saved to disk... ...and

picked up again later for other uses.
• Examples of persistent programs:
– Operating systems
– Databases
– Servers

46

Key idea: Program information is stored permanently
(e.g., on a hard drive), so that we can start and stop
programs without losing state of the program (values
of variables, where we are in execution, etc).

Reading and Writing Files

47

Underlyingly, every file on your computer is just a string of bit…

...which are broken up into (for example) bytes...

...groups of which correspond (in the case of text) to characters.

C a t

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0

Files and Filenames

• A file object represents data on your disk drive
– Can read from it and write to it

• A filename (usually a string) states where to find the data
on your disk drive
– Can be used to find/create a file

• Each operating system comes with its own file system for
creating and accessing files:
– Linux/Mac: "/home/rea/bbm101/lectures/file_io.pptx"
– Windows: "C:\Users\rea\MyDocuments\cute_dog.jpg"

48

Two Types of Filenames
• An Absolute filename gives a specific location on disk:

"/home/rea/bbm101/14wi/lectures/file_io.pptx" or
"C:\Users\rea\MyDocuments\homework3\images\Husky.png"
– Starts with “/” (Unix) or “C:\” (Windows)
– Warning: code will fail to find the file if you move/rename files or

run your program on a different computer

• A Relative filename gives a location relative to the current
working directory:
"lectures/file_io.pptx" or "images\Husky.png"
– Warning: code will fail to find the file unless you run your program

from a directory that contains the given contents

• A relative filename is usually a better choice

49

Examples
Linux/Mac: These could all refer to the same file:
"/home/rea/class/140/homework3/images/Husky.png"
"homework3/images/Husky.png"
"images/Husky.png"
"Husky.png"

Windows: These could all refer to the same file:
"C:\Users\rea\My Documents\class\140\homework3\images\Husky.png"
"homework3\images\Husky.png"
"images\Husky.png"
"Husky.png"

50

Depending on what your current working directory is
$ pwd -> print working directory

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['Obi-Wan.txt', 'Anakin.txt']

>>> os.chdir('princess_leia')
>>> cwd
'/Users/r2d2/princess_leia'

51

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['Obi-Wan.txt', 'Anakin.txt']

>>> os.chdir('princess_leia')
>>> cwd
'/Users/r2d2/princess_leia'

52

os module lets us interact with the operating system.
https://docs.python.org/3.6/library/os.html

https://docs.python.org/3.6/library/os.html

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['Obi-Wan.txt', 'Anakin.txt']

>>> os.chdir('princess_leia')
>>> cwd
'/Users/r2d2/princess_leia'

53

os module lets us interact with the operating system.
https://docs.python.org/3.6/library/os.html

os.getcwd() returns a string
corresponding to the current working
directory.

https://docs.python.org/3.6/library/os.html

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['Obi-Wan.txt', 'Anakin.txt']

>>> os.chdir('princess_leia')
>>> cwd
'/Users/r2d2/princess_leia'

54

os module lets us interact with the operating system.
https://docs.python.org/3.6/library/os.html

os.getcwd() returns a string
corresponding to the current working
directory.

os.listdir() lists the
contents of its argument, or the
current directory if no argument.

https://docs.python.org/3.6/library/os.html

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['Obi-Wan.txt', 'Anakin.txt']

>>> os.chdir('princess_leia')
>>> cwd
'/Users/r2d2/princess_leia'

55

os module lets us interact with the operating system.
https://docs.python.org/3.6/library/os.html

os.getcwd() returns a string
corresponding to the current working
directory.

os.listdir() lists the
contents of its argument, or the
current directory if no argument.

os.chdir() changes the
working directory. After calling
chdir(), we’re in a different
cwd.

https://docs.python.org/3.6/library/os.html

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['c3po', 'Obi-Wan.txt', 'Anakin.txt']

>>> os.path.abspath('princess_leia/Obi-Wan.txt')
'/Users/r2d2/princess_leia/Obi-Wan.txt'

56

Locating files: the os module
>>> import os
>>> cwd = os.getcwd()
>>> cwd
'/Users/r2d2/'

>>> os.listdir()
['death_star_plans', 'princess_leia']

>>> os.listdir('princess_leia')
['c3po', 'Obi-Wan.txt', 'Anakin.txt']

>>> os.path.abspath('princess_leia/Obi-Wan.txt')
'/Users/r2d2/princess_leia/Obi-Wan.txt'

57

Use os.path.abspath to
get the absolute path to a file
or directory.

Locating files: the os module
>>> import os
>>> os.chdir('/Users/r2d2')
>>> os.listdir('princess_leia')
['c3po', 'Obi-Wan.txt', 'Anakin.txt']

>>> os.path.exists('princess_leia/Anakin.txt')
True

>>> os.path.exists('princess_leia/JarJarBinks.txt')
False

>>> os.path.isdir('princess_leia/c3po')
True

>>> os.path.isdir('princess_leia/Obi-Wan.txt’)
False

58

Locating files: the os module
>>> import os
>>> os.chdir('/Users/r2d2')
>>> os.listdir('princess_leia')
['c3po', 'Obi-Wan.txt', 'Anakin.txt']

>>> os.path.exists('princess_leia/Anakin.txt')
True

>>> os.path.exists('princess_leia/JarJarBinks.txt')
False

>>> os.path.isdir('princess_leia/c3po')
True

>>> os.path.isdir('princess_leia/Obi-Wan.txt’)
False

59

Check whether or not a file/directory exists.

Locating files: the os module
>>> import os
>>> os.chdir('/Users/r2d2')
>>> os.listdir('princess_leia')
['c3po', 'Obi-Wan.txt', 'Anakin.txt']

>>> os.path.exists('princess_leia/Anakin.txt')
True

>>> os.path.exists('princess_leia/JarJarBinks.txt')
False

>>> os.path.isdir('princess_leia/c3po')
True

>>> os.path.isdir('princess_leia/Obi-Wan.txt’)
False

60

Check whether or not a file/directory exists.

Check whether or not this is a directory.
os.path.isfile() works analogously

Reading files

>>> f = open('demo.txt')
>>> type(f)
<type 'file'>

>>> f.readline()
'This is a demo file.\n'

61

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

Reading files

>>> f = open('demo.txt')
>>> type(f)
<type 'file'>

>>> f.readline()
'This is a demo file.\n'

62

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

This is the command line. We’ll see lots more
about this later, but for now, it suffices to
know that the command cat prints the
contents of a file to the screen.

Reading files

>>> f = open('demo.txt')
>>> type(f)
<type 'file'>

>>> f.readline()
'This is a demo file.\n'

63

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

Open the file demo.txt. This creates a file object f
https://docs.python.org/3/glossary.html#term-file-object

This is the command line. We’ll see lots more
about this later, but for now, it suffices to
know that the command cat prints the
contents of a file to the screen.

https://docs.python.org/3/glossary.html

Reading files

>>> f = open('demo.txt')
>>> type(f)
<type 'file'>

>>> f.readline()
'This is a demo file.\n'

64

Open the file demo.txt. This creates a file object f
https://docs.python.org/3/glossary.html#term-file-object

Provides a method for reading a single line from
the file. The string '\n' is a special character
that represents a new line. More on this soon.

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

This is the command line. We’ll see lots more
about this later, but for now, it suffices to
know that the command cat prints the
contents of a file to the screen.

https://docs.python.org/3/glossary.html

Reading files

>>> f = open('demo.txt')
>>> f.readline()
'This is a demo file.\n'

>>> f.readline()
'It is a text file, containing three lines of text.\n'

>>> f.readline()
'Here is the third line.\n'

>>> f.readline()

65

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

Reading files

>>> f = open('demo.txt')
>>> f.readline()
'This is a demo file.\n'

>>> f.readline()
'It is a text file, containing three lines of text.\n'

>>> f.readline()
'Here is the third line.\n'

>>> f.readline()

66

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

Each time we call f.readline(),
we get the next line of the file...

Reading files

>>> f = open('demo.txt')
>>> f.readline()
'This is a demo file.\n'

>>> f.readline()
'It is a text file, containing three lines of text.\n'

>>> f.readline()
'Here is the third line.\n'

>>> f.readline()

67

erkut:~/demo$ cat demo.txt
This is a demo file.
It is a text file, containing three lines of text.
Here is the third line.
erkut:~/demo$

Each time we call f.readline(),
we get the next line of the file...

...until there are no more lines to read, at
which point the readline() method returns
the empty string whenever it is called

Reading files
>>> f = open('demo.txt')
>>> for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 68

Reading files
>>> f = open('demo.txt')
>>> for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 69

We can treat f as an iterator, in which
each iteration gives us a line of the file.

Reading files
>>> f = open('demo.txt')
>>> for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 70

We can treat f as an iterator, in which
each iteration gives us a line of the file.

Iterate over each word in the line
(splitting on '' by default).

Reading files
>>> f = open('demo.txt')
>>> for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 71

We can treat f as an iterator, in which
each iteration gives us a line of the file.

Iterate over each word in the line
(splitting on '' by default).

Remove the trailing punctuation
from the words of the file.

Reading files
>>> f = open('demo.txt')
>>> for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 72

We can treat f as an iterator, in which
each iteration gives us a line of the file.

Iterate over each word in the line
(splitting on '' by default).

Remove the trailing punctuation
from the words of the file.

open() provides a bunch more (optional) arguments,
some of which we’ll discuss later.
https://docs.python.org/3/library/functions.html#open

https://docs.python.org/3/library/functions.html

Reading files
>>> with open('demo.txt’) as f:
... for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 73

Reading files
>>> with open('demo.txt’) as f:
... for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line 74

You may often see code written
this way, using the with keyword.
It suffices to know that this is
equivalent to what we did on the
previous slide.

Reading files

>>> with open('demo.txt’) as f:
... for line in f:
... for wd in line.split():
... print(wd.strip('.,'))
This
is
a
demo
file
It
is
a
text
file
containing
three
lines
of
text
Here
is
the
third
line

75

You may often see code written

this way, using the with keyword.

It suffices to know that this is

equivalent to what we did on the

previous slide.

From the documentation: “It is good practice to use the with
keyword when dealing with file objects. The advantage is that the

file is properly closed after its suite finishes, even if an exception is

raised at some point.”

https://docs.python.org/3/reference/compound_stmts.html#with

In plain English: the with keyword does a bunch of error

checking and cleanup for you, automatically.

https://docs.python.org/3/reference/compound_stmts.html

Reading a File Example

Count the number of words in a text file
in_file = "thesis.txt"
myfile = open(in_file)
num_words = 0
for line_of_text in myfile:

word_list = line_of_text.split()
num_words += len(word_list)

myfile.close()

print("Total words in file: ", num_words)

76

Reading a File Multiple Times

You can iterate over a list as many times as
you like:
mylist = [3, 1, 4, 1, 5, 9]
for elt in mylist:
… process elt

for elt in mylist:
… process elt

Iterating over a file uses it up:
myfile = open("datafile.dat")
for line_of_text in myfile:

… process line_of_text
for line_of_text in myfile:

… process line_of_text

How to read a file multiple times?

Solution 1: Read into a list, then iterate over it
myfile = open("datafile.dat")
mylines = []
for line_of_text in myfile:
mylines.append(line_of_text)

… use mylines

Solution 2: Re-create the file object
(slower, but a better choice if the file does not fit
in memory)
myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

myfile = open("datafile.dat")
for line_of_text in myfile:
… process line_of_text

77

This loop body will
never be executed!

Writing files
>>> f = open('animals.txt', 'w')
>>> f.read()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: File not open for reading

>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')

78

Writing files
>>> f = open('animals.txt', 'w')
>>> f.read()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: File not open for reading

>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')

79

Open the file in write mode.
If the file already exists, this
creates it anew, deleting its
old contents.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.read()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: File not open for reading

>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')

80

Open the file in write mode.
If the file already exists, this
creates it anew, deleting its
old contents.

If I try to read a file in write mode, I get an error.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.read()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: File not open for reading

>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')

81

Open the file in write mode.
If the file already exists, this
creates it anew, deleting its
old contents.

If I try to read a file in write mode, I get an error.

Write to the file. This method returns
the number of characters written to
the file. Note that '\n' counts as a
single character, the new line.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end=’’)
cat
dog
bird
goat

82

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end=’’)
cat
dog
bird
goat

83

Open the file in write mode.
This overwrites the version of
the file created in the previous
slide.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end=’’)
cat
dog
bird
goat

84

Open the file in write mode.
This overwrites the version of
the file created in the previous
slide.

Each write appends to the end of the file.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end=’’)
cat
dog
bird
goat

85

Open the file in write mode.
This overwrites the version of
the file created in the previous
slide.

Each write appends to the end of the file.

When we’re done, we close the file. This
happens automatically when the program
ends, but its good practice to close the file
as soon as you’re done.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end=’’)
cat
dog
bird
goat

86

Open the file in write mode.
This overwrites the version of
the file created in the previous
slide.

Each write appends to the end of the file.

When we’re done, we close the file. This
happens automatically when the program
ends, but its good practice to close the file
as soon as you’re done.

Now, when I open the file for reading,
I can print out the lines one by one.

Writing files
>>> f = open('animals.txt', 'w')
>>> f.write('cat\n')
>>> f.write('dog\n')
>>> f.write('bird\n')
>>> f.write('goat\n')
>>> f.close()

>>> f = open('animals.txt', 'r')
>>> for line in f:
... print(line, end='')
cat
dog
bird
goat

87

Open the file in write mode.
This overwrites the version of
the file created in the previous
slide.

Each write appends to the end of the file.

When we’re done, we close the file. This
happens automatically when the program
ends, but its good practice to close the file
as soon as you’re done.

Now, when I open the file for reading,
I can print out the lines one by one.

The lines of the file already include newlines
on the ends, so override Python’s default
behavior of printing a newline after each line.

More Examples - 1
nameHandle = open('characters.txt', 'w')
for i in range(2):

name = input('Enter name: ')
nameHandle.write(name + '\n')

nameHandle.close()

nameHandle = open('characters.txt', 'r')
for line in nameHandle:

print(line)
nameHandle.close()

88

• If we had typed in the names Rick and Morty, this will print
Rick

Morty

• The extra line between Rick and Morty is there because print starts a new line
each time it encounters the '\n' at the end of each line in the file.

More Examples - 2
nameHandle = open('characters.txt', 'w')
nameHandle.write('Jerry\n')
nameHandle.write('Beth\n')
nameHandle.close()

nameHandle = open('characters.txt', 'r')
for line in nameHandle:

print line[:-1]
nameHandle.close()

89

• It will print
Jerry
Beth

• Notice that
• we have overwritten the previous contents of the file.
• print line[:-1] avoids extra newline in the output

More Examples - 3
nameHandle = open('characters.txt', 'a')
nameHandle.write('Rick\n')
nameHandle.write('Morty\n')
nameHandle.close()

nameHandle = open(characters.txt', 'r')
for line in nameHandle:

print line[:-1]
nameHandle.close()

90

• It will print
Jerry
Beth
Rick
Morty

• Notice that we can open the file for appending (instead of writing) by using
the argument 'a'.

Common functions for accessing files
• open(fn, 'w') fn is a string representing a file name. Creates

a file for writing and returns a file handle.

• open(fn, 'r') fn is a string representing a file name. Opens
an existing file for reading and returns a file handle.

• open(fn, 'a') fn is a string representing a file name. Opens
an existing file for appending and returns a file handle.

• fn.close() closes the file associated with the file handle fn.

91

Common functions for accessing files
• fn.read() returns a string containing the contents of the file

associated with the file handle fn.

• fn.readline() returns the next line in the file associated with
the file handle fn.

• fn.readlines() returns a list each element of which is one
line of the file associated with the file handle fn.

• fn.write(s) write the string s to the end of the file associated
with the file handle fn.

• fn.writelines(S) S is a sequence of strings. Writes each
element of S to the file associated with the file handle fn.

92

Formatting Strings
>>> x = 23
>>> print(‘x = %d' % x)
x = 23

>>> animal = 'unicorn'
>>> print('My pet %s' % animal)
My pet unicorn

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y))
2.718000 divided by 1.618000 is 1.679852

>>> print('%.3f divided by %.3f is %.8f' % (x,y,x/y))
2.718 divided by 1.618 is 1.67985167

93

Formatting Strings
>>> x = 23
>>> print(‘x = %d' % x)
x = 23

>>> animal = 'unicorn'
>>> print('My pet %s' % animal)
My pet unicorn

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y))
2.718000 divided by 1.618000 is 1.679852

>>> print('%.3f divided by %.3f is %.8f' % (x,y,x/y))
2.718 divided by 1.618 is 1.67985167

94

Python provides tools for formatting
strings. Example: easier way to print
an integer as a string.

Formatting Strings
>>> x = 23
>>> print(‘x = %d' % x)
x = 23

>>> animal = 'unicorn'
>>> print('My pet %s' % animal)
My pet unicorn

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y))
2.718000 divided by 1.618000 is 1.679852

>>> print('%.3f divided by %.3f is %.8f' % (x,y,x/y))
2.718 divided by 1.618 is 1.67985167

95

Python provides tools for formatting
strings. Example: easier way to print
an integer as a string.

%d: integer
%s: string
%f: floating point
More information:
https://docs.python.org/3/library/stdtypes.
html#printf-style-string-formatting

https://docs.python.org/3/library/stdtypes.%20html

Formatting Strings
>>> x = 23
>>> print(‘x = %d' % x)
x = 23

>>> animal = 'unicorn'
>>> print('My pet %s' % animal)
My pet unicorn

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y))
2.718000 divided by 1.618000 is 1.679852

>>> print('%.3f divided by %.3f is %.8f' % (x,y,x/y))
2.718 divided by 1.618 is 1.67985167

96

Python provides tools for formatting
strings. Example: easier way to print
an integer as a string.

%d: integer
%s: string
%f: floating point
More information:
https://docs.python.org/3/library/stdtypes.
html#printf-style-string-formatting

Can further control details of
formatting, such as number of
significant figures in printing floats.

https://docs.python.org/3/library/stdtypes.%20html

Formatting Strings

>>> x = 23
>>> print(‘x = %d' % x)
x = 23

>>> animal = 'unicorn'
>>> print('My pet %s' % animal)
My pet unicorn

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y))
2.718000 divided by 1.618000 is 1.679852

>>> print('%.3f divided by %.3f is %.8f' % (x,y,x/y))
2.718 divided by 1.618 is 1.67985167

97

Python provides tools for formatting

strings. Example: easier way to print

an integer as a string.

%d: integer

%s: string

%f: floating point

More information:

https://docs.python.org/3/library/stdtypes.

html#printf-style-string-formatting

Newer features for similar functionality:

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

https://docs.python.org/3/library/stdtypes.html#str.format

Can further control details of

formatting, such as number of

significant figures in printing floats.

https://docs.python.org/3/library/stdtypes.%20html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/library/stdtypes.html

Formatting Strings
>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y,x/y,1.0))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError:not all arguments converted during string formatting

>>> x=2.718; y=1.618
>>> print('%f divided by %f is %f' % (x,y))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string

98

Note: Number of formatting
arguments must match the
length of the supplied tuple!

Writing modules
• Python provides modules (e.g., math, os, time)
• But we can also write our own, and import from them with same

syntax

>>> import prime
>>> prime.is_prime(2)
True

>>> prime.is_prime(3)
True

>>> prime.is_prime(1)
False

>>> prime.is_prime(33)
False

import math

def is_prime(n):
if n<=1:

return False
elif n==2:

return True
else:

ulim = math.ceil(math.sqrt(n))
for k in range(2,ulim+1):

if n%k==0:
return False

return True

prime.py

Writing modules
>>> from prime import *
>>> is_prime(7)
True

>>> is_square(7)
False

>>> is_prime(373)
True

import math

def is_prime(n):
if n<=1:

return False
elif n==2:

return True
else:

ulim = math.ceil(math.sqrt(n))
for k in range(2,ulim+1):

if n%k==0:
return False

return True

def is_square(n):
r = int(math.sqrt(n))
return(r*r==n or (r+1)*(r+1)==n)

prime.py

Writing modules
>>> from prime import *
>>> is_prime(7)
True

>>> is_square(7)
False

>>> is_prime(373)
True

Import everything defined in prime, so we can
call it without the prefix. Can also import specific
functions: from prime import is_square

import math

def is_prime(n):
if n<=1:

return False
elif n==2:

return True
else:

ulim = math.ceil(math.sqrt(n))
for k in range(2,ulim+1):

if n%k==0:
return False

return True

def is_square(n):
r = int(math.sqrt(n))
return(r*r==n or (r+1)*(r+1)==n)

prime.py

Writing modules
>>> from prime import *
>>> is_prime(7)
True

>>> is_square(7)
False

>>> is_prime(373)
True

import math

def is_prime(n):
if n<=1:

return False
elif n==2:

return True
else:

ulim = math.ceil(math.sqrt(n))
for k in range(2,ulim+1):

if n%k==0:
return False

return True

def is_square(n):
r = int(math.sqrt(n))
return(r*r==n or (r+1)*(r+1)==n)

prime.py

Import everything defined in prime, so we can
call it without the prefix. Can also import specific
functions: from prime import is_square

Caution: be careful that you
don’t cause a collision with an
existing function or a function
in another module!

