
Lecture #09 – Testing and Debugging

Fuat Akal, Aykut Erdem & Erkut Erdem // Fall 2019

BBM 101
Introduction to
Programming I

The Adventures of Sherlock Holmes (1939)

Last time… Sets, Dictionaries, File I/O
Sets

2

Dictionaries
odd = set([1, 3, 5])
prime = set([2, 3, 5])
empty = set([])

dictionary

keys values

’cat’

’dog’

’goat’

12

3.1415

2.718

35

’one’

[1,2,3

• open(fn, 'w’)
• open(fn, 'r’)
• open(fn, 'a')
• fn.close()
• fn.read()
• fn.readline()
• fn.readlines()
• fn.write(s)
• fn.writelines(S)

File I/O

Lecture Overview
• Debugging
• Exception Handling
• Testing

3

Disclaimer: Much of the material and slides for this lecture were borrowed from
—R. Anderson, M. Ernst and B. Howe in University of Washington CSE 140

https://www.monkeyuser.com/2019/bug-fixing-ways/

https://www.monkeyuser.com/2019/bug-fixing-ways/

Lecture Overview
• Debugging
• Exception Handling
• Testing

4https://www.reddit.com/r/ProgrammerHumor/comments/1r0cw7/the_5_stages_of_debugging/

https://www.reddit.com/r/ProgrammerHumor/comments/1r0cw7/the_5_stages_of_debugging/

The Problem

What you want
your program to do What your program does

Not the same!

5

There is a bug!

“Computers are good at following
instructions, but not at reading
your mind.” - Donald Knuth

What is Debugging?
• Grace Hopper was one of U.S.’s first programmers.
• She found a moth in the Mark I computer, which was

causing errors, and called it a computer “bug”
• Thus, the word debugging is coined J

6

Debugging Tools
• Python error message
• assert
• print
• Python interpreter
• Python Tutor (http://pythontutor.com)
• Python debugger
• Best tool:

7

http://pythontutor.com/

1. The scientific method
2. Divide and conquer

If you master those, you will find debugging
easy, and possibly enjoyable ;-)

8

Two Key Ideas

The Scientific Method

1. Create a hypothesis

2. Design an experiment to test that hypothesis
– Ensure that it yields insight

3. Understand the result of your experiment
– If you don’t understand, then possibly suspend

your main line of work to understand that

9

The Scientific Method

Tips:

• Be systematic
– Never do anything if you don't have a reason

– Don’t just flail
• Random guessing is likely to dig you into a deeper hole

• Don’t make assumptions (verify them)

10

Example Experiments
1. An alternate implementation of a function
– Run all your test cases afterward

2. A new, simpler test case
– Examples: smaller input, or test a function in

isolation
– Can help you understand the reason for a failure

11

Your Scientific Notebook
Record everything you do
• Specific inputs and outputs (both expected and actual)
• Specific versions of the program

– If you get stuck, you can return to something that works
– You can write multiple implementations of a function

• What you have already tried
• What you are in the middle of doing now

– This may look like a stack!

• What you are sure of, and why

Your notebook also helps if you need to get help or reproduce
your results.

12

Read the Error Message

Traceback (most recent call last):
File "nx_error.py", line 41, in <module>
print(friends_of_friends(rj, myval))

File "nx_error.py", line 30, in friends_of_friends
f = friends(graph, user)

File "nx_error.py", line 25, in friends
return set(graph.neighbors(user))#

File "/Library/Frameworks/…/graph.py", line 978, in neighbors
return list(self.adj[n])

TypeError: unhashable type: 'list'

List of all exceptions (errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions
Two other resources, with more details about a few of the errors:
http://inventwithpython.com/appendixd.html
http://www.cs.arizona.edu/people/mccann/errors-python

Call stack or traceback

First function that was
called (<module>
means the interpreter)

Second function
that was called

Last function that
was called (this one
suffered an error)

The error message:
daunting but useful.
You need to understand:
• the literal meaning of

the error
• the underlying

problems certain
errors tend to suggest13

http://docs.python.org/3/library/exceptions.html
http://inventwithpython.com/appendixd.html
http://www.cs.arizona.edu/people/mccann/errors-python

Common Error Types

• AssertionError
– Raised when an assert statement fails.

• IndexError
– Raised when a sequence subscript is out of range.

• KeyError
– Raised when a mapping (dictionary) key is not found in the

set of existing keys.
• KeyboardInterrupt
– Raised when the user hits the interrupt key (normally

Control-C or Delete).

14

Common Error Types

• NameError
– Raised when a local or global name is not found.

• SyntaxError
– Raised when the parser encounters a syntax error.

• IndentationError
– Base class for syntax errors related to incorrect

indentation.
• TypeError
– Raised when an operation or function is applied to an

object of inappropriate type.

15

Divide and Conquer

• Where is the defect (or “bug”)?
• Your goal is to find the one place that it is
• Finding a defect is often harder than fixing it

• Initially, the defect might be anywhere in your program
– It is impractical to find it if you have to look everywhere

• Idea: bit by bit reduce the scope of your search
• Eventually, the defect is localized to a few lines or one

line
– Then you can understand and fix it

16

Divide and Conquer

• 4 ways to divide and conquer:
– In the program code
– In test cases
– During the program execution
– During the development history

17

• Localize the defect to part of the program
– e.g., one function, or one part of a function

• Code that isn’t executed cannot contain the defect

18

Divide and Conquer in the Program Code

Three approaches:
1. Test one function at a time

19

Divide and Conquer in the Program Code

Three approaches:
2. Add assertions or print statements
– The defect is executed before the failing assertion

(and maybe after a succeeding assertion)

20

Divide and Conquer in the Program Code

Three approaches:
3. Split complex expressions into simpler ones

Example: Failure in
result = set({graph.neighbors(user)})

Change it to
nbors = graph.neighbors(user)

nbors_set = {nbors}

result = set(nbors_set)

The error occurs on the “nbors_set = {nbors}" line
21

Divide and Conquer in the Program Code

Divide and Conquer in Test Cases

• Your program fails when run on some large input
– It’s hard to comprehend the error message
– The log of print statement output is overwhelming

• Try a smaller input
– Choose an input with some but not all characteristics of

the large input
– Example: duplicates, zeroes in data, …

22

Divide and Conquer in Execution Time
via Print (or “logging”) Statements

• A sequence of print statements is a record of the
execution of your program

• The print statements let you see and search
multiple moments in time

• Print statements are a useful technique, in moderation
• Be disciplined
– Too much output is overwhelming rather than informative
– Remember the scientific method: have a reason (a

hypothesis to be tested) for each print statement
– Don’t only use print statements

23

Divide and Conquer in Development History

• The code used to work (for some test case)
• The code now fails
• The defect is related to some line you changed

• This is useful only if you kept a version of the
code that worked (use good names!)

• This is most useful if you have made few changes
• Moral: test often!
– Fewer lines to compare
– You remember what you were thinking/doing recently

24

A Metaphor About Debugging

If your code doesn’t work as
expected, then by definition you
don’t understand what is going on.

• You’re lost in the woods.
• You’re behind enemy lines.
• All bets are off.
• Don’t trust anyone or anything.

Don’t press on into unexplored
territory -- go back the way you
came! (and leave breadcrumbs!)

You’re trying to “advance the front lines,” not “trailblaze”
25

• The game is to go from “working to working”
• When something doesn’t work, STOP!
– It’s wild out there!

• FIRST: Go back to the last situation that worked properly.
– Rollback your recent changes and verify that everything still works as

expected.
– Don’t make assumptions – by definition, you don’t understand the

code when something goes wrong, so you can’t trust your
assumptions.

– You may find that even what previously worked now doesn’t
– Perhaps you forgot to consider some “innocent” or unintentional

change, and now even tested code is broken

26

Time-Saving Trick: Make Sure You are
Debugging the Right Problem

A Bad Timeline

• A works, so celebrate a little
• Now try B
• B doesn’t work
• Change B and try again
• Change B and try again
• Change B and try again
…

27

https://xkcd.com/1739/

https://xkcd.com/1739/

A Bad Timeline

• A works, so celebrate a little
• Now try B
• B doesn’t work
• Change B and try again
• Change B and try again
• Change B and try again
…

28

from giphy.com

http://giphy.com/

A Better Timeline
• A works, so celebrate a little
• Now try B
• B doesn’t work
• Rollback to A
• Does A still work?

– Yes: Find A’ that is somewhere between A and B
– No: You have unintentionally changed something else, and there’s no

point futzing with B at all!

These “innocent” and unnoticed changes happen more than you would think!
• You add a comment, and the indentation changes.
• You add a print statement, and a function is evaluated twice.
• You move a file, and the wrong one is being read
• You are on a different computer, and the library is a different version

29

Once You are on Solid Ground You can
Set Out Again
• Once you have something that works and

something that doesn’t work, it is only a matter
of time

• You just need to incrementally change the
working code into the non-working code, and the
problem will reveal itself.

• Variation: Perhaps your code works with one
input, but fails with another. Incrementally
change the good input into the bad input to
expose the problem.

30

Simple Debugging Tools
print
– shows what is happening whether there is a problem or

not
– does not stop execution

assert
– Raises an exception if some condition is not met
– Does nothing if everything works
– Example: assert len(rj.edges()) == 16

– Use this liberally! Not just for debugging!

31

32

33

Lecture Overview
• Debugging
• Exception Handling
• Testing

34

What is an Exception?
• An exception is an abnormal condition (and thus

rare) that arises in a code sequence at runtime.
• For instance:
– Dividing a number by zero
– Accessing an element that is out of bounds of an array
– Attempting to open a file which does not exist

35

What is an Exception?
• When an exceptional condition arises, an object

representing that exception is created and thrown in
the code that caused the error

• An exception can be caught to handle it or pass it on

• Exceptions can be generated by the run-time system,
or they can be manually generated by your code

36

What is an Exception?
test = [1,2,3]
test[3]

37

IndexError: list index out of range

What is an Exception?
successFailureRatio = numSuccesses/numFailures

print('The success/failure ratio is',
successFailureRatio)

print('Now here')

38

ZeroDivisionError: integer division or
modulo by zero

What is an Exception?
val = int(input('Enter an integer: '))

print('The square of the number', val**2)

> Enter an integer: asd

39

ValueError: invalid literal for int() with
base 10: 'asd'

Handling Exceptions
• Exception mechanism gives the programmer a chance

to do something against an abnormal condition.

• Exception handling is performing an action in response
to an exception.

• This action may be:
– Exiting the program
– Retrying the action with or without alternative data
– Displaying an error message and warning user to do

something
–

40

Handling Exceptions
try:

successFailureRatio = numSuccesses/numFailures

print('The S/F ratio is', successFailureRatio)

except ZeroDivisionError:

print('No failures, so the S/F is undefined.')

print('Now here')

41

• Upon entering the try block, the interpreter attempts to evaluate
the expression numSuccesses/numFailures.

• If expression evaluation is successful, the assignment is done and
the result is printed.

• If, however, a ZeroDivisionError exception is raised, the print
statement in the except block is executed.

while True:
val = input('Enter an integer: ')
try:

val = int(val)
print('The square of the number', val**2)
break #to exit the while loop

except ValueError:
print(val, 'is not an integer')

42

Handling Exceptions

Checks for whether ValueError exception is raised or not

Keywords of Exception Handling
• There are five keywords in Python to deal with

exceptions: try, except, else, raise and finally.

• try: Creates a block to monitor if any exception
occurs.

• except: Follows the try block and catches any
exception which is thrown within it.

43

Are There Many Exceptions in Python?

• Yes, some of them are…
– Exception
– ArithmeticError
– OverflowError
– ZeroDivisonError
– EOFError
– NameError
– IOError
– SyntaxError

44

List of all exceptions (errors):
http://docs.python.org/3/library/exceptions.html#bltin-exceptions

http://docs.python.org/3/library/exceptions.html

Multiple except Statements

45

• It is possible that more than one exception can be
thrown in a code block.
– We can use multiple except clauses

• When an exception is thrown, each except
statement is inspected in order, and the first one
whose type matches that of the exception is executed.
– Type matching means that the exception thrown must be an

object of the same class or a sub-class of the declared class
in the except statement

• After one except statement executes, the others are
bypassed.

Multiple except Statements

46

try:

You do your operations here;
except Exception-1:

Execute this block.
except Exception-2:

Execute this block.
except (Exception-3[, Exception-4[,...ExceptionN]]]):

If there is any exception from the given exception list,
then execute this block.

except (ValueError, TypeError):
…

The except block will be entered if any of the listed
exceptions is raised within the try block

Multiple except Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

47

You can't divide by zero!

Multiple except Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except Exception:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

48

Exception occured and handled!

Multiple except Statements
try:

f = open('outfile.dat', 'w')
dividend = 5
divisor = 0
division = dividend / divisor
f.write(str(division))

except:
print("Exception occured and handled!")

except IOError:
print("I can't open the file!")

except ZeroDivisionError:
print("You can't divide by zero!")

49

SyntaxError: default 'except:' must be last

except-else Statements

50

try:
You do your operations here

except:
Execute this block.

else:
If there is no exception, execute this block.

try:
f = open(arg, 'r')

except IOError:
print('cannot open', arg)

else:
print(arg, 'has', len(f.readlines()), 'lines')

finally Statement

51

• finally creates a block of code that will be executed after
a try/except block has completed and before the code
following the try/except block

• finally block is executed whether or not exception is thrown

• finally block is executed whether or not exception is caught

• It is used to gurantee that a code block will be executed in any
condition.

finally Statement

52

You can use it to clean up files, database connections, etc.

try:
You do your operations here

except:
Execute this block.

finally:
This block will definitely be executed.

try:
file = open('out.txt', 'w')
do something…

finally:
file.close()
os.path.remove('out.txt')

Nested try Blocks
• When an exception occurs inside a try block;

– If the try block does not have a matching except, then the outer
try statement’s except clauses are inspected for a match

– If a matching except is found, that except block is executed
– If no matching except exists, execution flow continues to find a

matching except by inspecting the outer try statements
– If a matching except cannot be found at all, the exception will be

caught by Python’s exception handler.

• Execution flow never returns to the line that exception
was thrown. This means, an exception is caught and
except block is executed, the flow will continue with the
lines following this except block

53

Let’s clarify it on various scenarios

54

try:
statement1
try:

statement2
except Exception1:

statement3
except Exception2:

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Information: Exception1 and Exception2 are
subclasses of Exception3

Question: Which statements are executed if
1- statement1 throws Exception1
2- statement2 throws Exception1
3- statement2 throws Exception3
4- statement2 throws Exception1 and
statement3 throws Exception2

Scenario: statement1 throws Exception1

55

try:
statement1
try:

statement2
except Exception1:

statement3
except Exception2:

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1: Exception is thrown

Step2: except clauses of the try
block are inspected for a
matching except statement.
Exception3 is super class of
Exception1, so it matches.

Step3: statement8 is executed, exception is handled and execution
flow will continue bypassing the following except clauses

Step4: statement9 is executed

Scenario: statement2 throws Exception1

56

try:
statement1
try:

statement2
except Exception1:

statement3
except Exception2:

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1: Exception is thrown

Step2: except clauses of the try block are
inspected for a matching except statement. First
clause catches the exception

Step3: statement3 is executed, exception is
handled

Step4: execution flow will continue bypassing the
following except clauses. statement5 is executed.

Step5: Assuming no exception is thrown by
statement5, program continues with statement7
and statement9.

Scenario: statement2 throws Exception3

57

try:
statement1
try:

statement2
except Exception1:

statement3
except Exception2:

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception3
Step1: Exception is thrown

Step2: except clauses of the try block are
inspected for a matching except statement.
None of these except clauses match Exception3

Step3: except clauses of the outer try statement
are inspected for a matching except . Exception3 is
catched and statement8 is executed

Step4: statement9 is executed

Scenario: statement2 throws Exception1
and statement3 throws Exception2

58

try:
statement1
try:

statement2
except Exception1:

statement3
except Exception2:

statement4;
try:

statement5
except Exception3:

statement6
statement7;

except Exception3:
statement8

statement9;

Exception1
Step1: Exception is thrown

Step2: Exception is catched and statement3 is
executed.

Step3: statement3 throws a new exception

Step5: statement9 is executed

Exception2

Step4: Except clauses of the outer
try statement are inspected for a
matching except. Exception2 is
catched and statement8 is
executed

raise Statement
• You can raise exceptions by using the raise

statement.

• The syntax is as follows:
raise exceptionName(arguments)

59

raise Statement
def getRatios(vect1, vect2):

ratios = []

for index in range(len(vect1)):
try:

ratios.append(vect1[index]/vect2[index])
except ZeroDivisionError:

ratios.append(float('nan')) #nan = Not a Number
except:

raise ValueError(’getRatios called with bad arguments’)
return ratios

try:
print(getRatios([1.0, 2.0, 7.0, 6.0], [1.0,2.0,0.0,3.0]))
print(getRatios([], []))

print(getRatios([1.0, 2.0], [3.0]))
except ValueError as msg:

print(msg)
60

[1.0, 1.0, nan, 2.0]
[]
getRatios called with bad arguments

raise Statement
• Avoid raising a generic Exception! To catch it, you'll have

to catch all other more specific exceptions that subclass it..

61

def demo_bad_catch():
try:

raise ValueError('a hidden bug, do not catch this')
raise Exception('This is the exception you expect to handle')

except Exception as error:
print('caught this error: ' + repr(error))

>>> demo_bad_catch()
caught this error: ValueError('a hidden bug, do not catch this',)

raise Statement
• and more specific catches won't catch the general exception:..

62

def demo_no_catch():
try:

raise Exception('general exceptions not caught by specific handling')
except ValueError as e:

print('we will not catch e')

>>> demo_no_catch()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in demo_no_catch

Exception: general exceptions not caught by specific handling

Custom Exceptions

63

• Users can define their own exception by creating a
new class in Python.

• This exception class has to be derived, either directly
or indirectly, from Exception class.

• Most of the built-in exceptions are also derived form
this class.

Custom Exceptions

class ValueTooSmallError(Exception):
"""Raised when the input value is too small"""
pass

class ValueTooLargeError(Exception):
"""Raised when the input value is too large"""
pass

64

Custom Exceptions

number = 10 # you need to guess this number

while True:
try:

i_num = int(input("Enter a number: "))
if i_num < number:

raise ValueTooSmallError
elif i_num > number:

raise ValueTooLargeError
break

except ValueTooSmallError:
print("This value is too small, try again!")

except ValueTooLargeError:
print("This value is too large, try again!")

print("Congratulations! You guessed it correctly.")

65

Lecture Overview
• Debugging
• Exception Handling
• Testing

66

Testing
• Programming to analyze data is powerful
• It is useless if the results are not correct
• Correctness is far more important than speed

67

Famous Examples
• Ariane 5 rocket
– On June 4, 1996, the maiden flight

of the European Ariane 5 launcher
crashed about 40 seconds after takeoff.

– Media reports indicated that the amount lost was half
a billion dollars

– The explosion was the result of a software error

• Therac-25 radiation therapy machine
– In 1985 a Canadian-built radiation-treatment device

began blasting holes through patients' bodies.

68

Testing does not Prove Correctness
• Edsger Dijkstra: “Program testing can be used

to show the presence of bugs, but never to
show their absence!”

69

Testing = Double-Checking Results
• How do you know your program is right?
– Compare its output to a correct output

• How do you know a correct output?
– Real data is big
– You wrote a computer program because it is not

convenient to compute it by hand

• Use small inputs so you can compute by hand

• Example: standard deviation
– What are good tests for std_dev?

70

Testing ≠ Debugging
• Testing: Determining whether your program

is correct
– Doesn’t say where or how your program is

incorrect

• Debugging: Locating the specific defect in
your program, and fixing it
2 key ideas:
– divide and conquer
– the scientific method

71

What is a Test?

• A test consists of:
– an input: sometimes called “test data”
– an oracle: a predicate (boolean expression) of the

output

72

What is a Test?

• Example test for sum:
– input: [1, 2, 3]
– oracle: result is 6
– write the test as: sum([1, 2, 3]) == 6

• Example test for sqrt:
– input: 3.14
– oracle: result is within 0.00001 of 1.772
– ways to write the test:
• -0.00001 < sqrt(3.14) – 1.772 < 0.00001
• math.abs(sqrt(3.14) – 1.772) < 0.00001

73

Test Results
• The test passes if the boolean expression evaluates

to True

• The test fails if the boolean expression evaluates to
False

• Use the assert statement:
– assert sum([1, 2, 3]) == 6
– assert True does nothing
– assert False crashes the program and prints a

message

74

Where to Write Test Cases
• At the top level: is run every time you load your program

def hypotenuse(a, b):
…

assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

• In a test function: is run when you invoke the function
def hypotenuse(a, b):
…

def test_hypotenuse():
assert hypotenuse(3, 4) == 5
assert hypotenuse(5, 12) == 13

75

Assertions are not Just for Test Cases
• Use assertions throughout your code

• Documents what you think is true about your
algorithm

• Lets you know immediately when something goes
wrong
– The longer between a code mistake and the programmer

noticing, the harder it is to debug

76

Assertions Make Debugging Easier
• Common, but unfortunate, course of events:
– Code contains a mistake (incorrect assumption or algorithm)
– Intermediate value (e.g., result of a function call) is incorrect
– That value is used in other computations, or copied into other

variables
– Eventually, the user notices that the overall program produces

a wrong result
– Where is the mistake in the program? It could be anywhere.

• Suppose you had 10 assertions evenly distributed in your
code
– When one fails, you can localize the mistake to 1/10 of your

code (the part between the last assertion that passes and the
first one that fails)

77

Where to Write Assertions
• Function entry: Are arguments legal?
– Place blame on the caller before the function fails

• Function exit: Is result correct?

• Places with tricky or interesting code

• Assertions are ordinary statements; e.g., can appear
within a loop:

for n in myNumbers:
assert type(n) == int or type(n) == float

78

Where not to Write Assertions
• Don’t clutter the code
– Same rule as for comments

• Don’t write assertions that are certain to succeed
– The existence of an assertion tells a programmer that it

might possibly fail

• Don’t write an assertion if the following code would fail
informatively

assert type(name) == str
print("Hello, " + name)

• Write assertions where they may be useful for
debugging

79

What to Write Assertions About
• Results of computations

• Correctly-formed data structures

assert 0 <= index < len(mylist)
assert len(list1) == len(list2)

80

When to Write Tests
• Two possibilities:
– Write code first, then write tests
– Write tests first, then write code

81

When to Write Tests
• If you write the code first, you remember the

implementation while writing the tests
– You are likely to make the same mistakes in the

implementation

82

When to Write Tests
• If you write the tests first, you will think more

about the functionality than about a particular
implementation
– You might notice some aspect of behavior that

you would have made a mistake about
– This is the better choice

83

Write the Whole Test
• A common mistake:

1. Write the function
2. Make up test inputs
3. Run the function
4. Use the result as the oracle

• You didn’t write a test, but only half of a test
– Created the tests inputs, but not the oracle

• The test does not determine whether the function is
correct
– Only determines that it continues to be as correct (or

incorrect) as it was before

84

Testing Approaches
• Black box testing - Choose test data without

looking at implementation

• Glass box (white box, clear box) testing -
Choose test data with knowledge of
implementation

85

Inside Knowledge might be Nice
• Assume the code below:

c = a + b
if c > 100

print("Tested”)
print("Passed”)

• Creating a test case with a=40 and b=70 is not enough
– Although every line of the code will be executed

• Another test case with a=40 and b=30 would complete
the test

86

Tests might not Reveal an Error Sometimes

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty number list."""
return sum(numbers)//len(numbers)

Tests
assert mean([1, 2, 3, 4, 5]) == 3
assert mean([1, 2, 3]) == 2

This implementation is elegant, but wrong!

mean([1,2,3,4]) à would return 2.5!!!

87

Last but not Least, Don’t Write Meaningless Tests

def mean(numbers):
"""Returns the average of the argument list.

The argument must be a non-empty number list."""
return sum(numbers)//len(numbers)

Unnecessary tests. Don’t write these:

mean([1, 2, "hello"])
mean("hello")
mean([])

88

